Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Interaction Study of Co-Crystallization or Salt Formation Between 5-Hydroxyisophthalic Acid and 4,4′-Bipyridine using NMR and Powder X-Ray Diffraction
Corresponding Author(s) : Balvinder Singh
Asian Journal of Chemistry,
Vol. 33 No. 12 (2021): Vol 33 Issue 12, 2021
Abstract
When an organic acid and an organic base are used for the study of potential co-crystallization then on the basis of differences in their pKa salt, co-crystal or proton transfer is possible. A study of the Cambridge Structural Database (CSD) revealed that no cocrystal or salt formation has been observed between 5-hydroxyisophthalic acid (5-HIPA) and 4,4′-bipyridine (4,4-BIPY). This fact provided motivation for the study of interaction between these two leading to co-crystallizations or salt formation. On comparing differences in their pKa values these two lays in transition range where three possibilities as mentioned above may be present. In this study, it is emphasized on exploring interaction between 5-HIPA and 4,4-BIPY, using solution state NMR and powder X-ray diffraction (PXRD) and find feasibility of cocrystal formation, salt formation or proton transfer. After studying this system, evidence were found in support of proton transfer between 5-HIPA and 4,4-BIPY and molar ratio for maximum interaction between acid and base was also mapped and found to be 1:1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Kimura, Cryst. Growth Des., 6, 854 (2006); https://doi.org/10.1021/cg050090p
- H. Colfen and S. Mann, Angew. Chem. Int. Ed., 42, 2350 (2003); https://doi.org/10.1002/anie.200200562
- J. Bernstein, R.J. Davey and J.O. Henck, Angew. Chem. Int. Ed., 38, 3440 (1999); https://doi.org/10.1002/(SICI)1521-3773(19991203)38:23<3440::AID-ANIE3440>3.0.CO;2-%23
- R.J. Davey, Cryst. Growth Des., 2, 675 (2002); https://doi.org/10.1021/cg020039a
- G.R. Desiraju, Angew. Chem. Int. Ed., 46, 8342 (2007); https://doi.org/10.1002/anie.200700534
- G.R. Desiraju, Angew. Chem. Int. Ed. Engl., 34, 2311 (1995); https://doi.org/10.1002/anie.199523111
- S. Aitipamula, R. Banerjee, A.K. Bansal, K. Biradha, M.L. Cheney, A.R. Choudhury, G.R. Desiraju, A.G. Dikundwar, R. Dubey, N. Duggirala, P.P. Ghogale, S. Ghosh, P.K. Goswami, N.R. Goud, R.R.K.R. Jetti, P. Karpinski, P. Kaushik, D. Kumar, V. Kumar, B. Moulton, A. Mukherjee, G. Mukherjee, A.S. Myerson, V. Puri, A. Ramanan, T. Rajamannar, C.M. Reddy, N. Rodriguez-Hornedo, R.D. Rogers, T.N.G. Row, P. Sanphui, N. Shan, G. Shete, A. Singh, C.C. Sun, J.A. Swift, R. Thaimattam, T.S. Thakur, R. Kumar Thaper, S.P. Thomas, S. Tothadi, V.R. Vangala, N. Variankaval, P. Vishweshwar, D.R. Weyna and M.J. Zaworotko, Cryst. Growth Des., 12, 2147 (2012); https://doi.org/10.1021/cg3002948
- A.S. Athira, S. Anu, S.R. Seeja and M.S. Thaifa, Int. J. Pharm. Res. Scholars, 7, 1 (2018); https://doi.org/10.31638/IJPRS.V7.I3.00050
- C.R. Taylor and G.M. Day, Cryst. Growth Des., 18, 892 (2018); https://doi.org/10.1021/acs.cgd.7b01375
- D. Braga, F. Grepioni, L. Maini and M. Polito, Eds.: M. Hosseini, Molecular Networks. Structure and Bonding, Springer: Berlin, Heidelberg, vol. 132, p. 87 (2009). https://doi.org/10.1007/978-3-642-01367-6_7
- P.C.D. Hawkins, A.G. Skillman and A. Nicholls, J. Med. Chem., 50, 74 (2007); https://doi.org/10.1021/jm0603365
- P. Vishweshwar, J.A. McMahon, J.A. Bis and M.J. Zaworotko, J. Pharm. Sci., 95, 499 (2006); https://doi.org/10.1002/jps.20578
- S. Sedghiniya, J. Soleimannejad and J. Janczak, Acta Cryst., C75, 412 (2019). https://doi.org/10.1107/S2053229619003127
- H.C. Joshi and L. Antonov, Molecules, 26, 1475 (2021); https://doi.org/10.3390/molecules26051475
- A.B. Kama, E. Jeanneau, M. Sidibe, C.A.K. Diop and R. Gautier, J. Cryst. Growth, 528, 125267 (2019); https://doi.org/10.1016/j.jcrysgro.2019.125267
- G.R. Desiraju, J.J. Vittal and A. Ramanan, Crystal Engineering-A Textbook, World Scientific, IISc Press, India (2011) .
- A. Spitaleri, C.A. Hunter, J.F. McCabe, M.J. Packer and S.L. Cockroft, CrystEngComm, 6, 489 (2004); https://doi.org/10.1039/b407163h
- C.A. Hunter and M.J. Packer, Chem. Eur. J., 5, 1891 (1999); https://doi.org/10.1002/(SICI)1521-3765(19990604)5:6<1891::AIDCHEM1891>3.0.CO;2-G
- M. Gardner, A. J. Guerin, C. A. Hunter, U. Michelsen and C. Rotger, New J. Chem., 23, 309 (1999); https://doi.org/10.1039/a807876i
- T. Asakura and M. Ishida, J. Colloid Interface Sci., 130, 184 (1989); https://doi.org/10.1016/0021-9797(89)90089-1
- X. Ding, T.C. Stringfellow and J.R. Robinson, J. Pharm. Sci., 93, 1351 (2004); https://doi.org/10.1002/jps.20034
- K. Shikii, S. Sakamoto, H. Seki, H. Utsumi and K. Yamaguchi, Tetrahedron, 60, 3487 (2004); https://doi.org/10.1016/j.tet.2004.02.030
- A. Mukherjee, K. Dixit, S.P. Sarma and G.R. Desiraju, IUCrJ, 1, 228 (2014); https://doi.org/10.1107/S2052252514012081
- V. Kumar, P.K. Goswami, R. Thaimattam and A. Ramanan, CrystEngComm, 20, 3490 (2018); https://doi.org/10.1039/C8CE00486B
- M. Gelmont, O. Arad and J. Oren, Org. Process Res. Dev., 7, 121 (2003); https://doi.org/10.1021/op0200930
- A. Davies, E. Felder and P. Tirone, Drugs Future, 15, 1074 (1990); https://doi.org/10.1358/dof.1990.015.11.147135
- K. Biradha, M. Sarkar and L. Rajput, Chem. Commun., 40, 4169 (2006); https://doi.org/10.1039/B606184B
- A. Ranganathan, V.R. Pedireddi, G. Sanjayan, K.N. Ganesh and C.N.R. Rao, J. Mol. Struct., 522, 87 (2000); https://doi.org/10.1016/S0022-2860(99)00356-7
- M.-H. Zeng, W.-X. Zhang, X.-Z. Sun and X.-M. Chen, Angew. Chem. Int. Ed., 44, 3079 (2005); https://doi.org/10.1002/anie.200462463
- S. Sobczak and A. Katrusiak, Cryst. Growth Des., 18, 1082 (2018); https://doi.org/10.1021/acs.cgd.7b01535
References
M. Kimura, Cryst. Growth Des., 6, 854 (2006); https://doi.org/10.1021/cg050090p
H. Colfen and S. Mann, Angew. Chem. Int. Ed., 42, 2350 (2003); https://doi.org/10.1002/anie.200200562
J. Bernstein, R.J. Davey and J.O. Henck, Angew. Chem. Int. Ed., 38, 3440 (1999); https://doi.org/10.1002/(SICI)1521-3773(19991203)38:23<3440::AID-ANIE3440>3.0.CO;2-%23
R.J. Davey, Cryst. Growth Des., 2, 675 (2002); https://doi.org/10.1021/cg020039a
G.R. Desiraju, Angew. Chem. Int. Ed., 46, 8342 (2007); https://doi.org/10.1002/anie.200700534
G.R. Desiraju, Angew. Chem. Int. Ed. Engl., 34, 2311 (1995); https://doi.org/10.1002/anie.199523111
S. Aitipamula, R. Banerjee, A.K. Bansal, K. Biradha, M.L. Cheney, A.R. Choudhury, G.R. Desiraju, A.G. Dikundwar, R. Dubey, N. Duggirala, P.P. Ghogale, S. Ghosh, P.K. Goswami, N.R. Goud, R.R.K.R. Jetti, P. Karpinski, P. Kaushik, D. Kumar, V. Kumar, B. Moulton, A. Mukherjee, G. Mukherjee, A.S. Myerson, V. Puri, A. Ramanan, T. Rajamannar, C.M. Reddy, N. Rodriguez-Hornedo, R.D. Rogers, T.N.G. Row, P. Sanphui, N. Shan, G. Shete, A. Singh, C.C. Sun, J.A. Swift, R. Thaimattam, T.S. Thakur, R. Kumar Thaper, S.P. Thomas, S. Tothadi, V.R. Vangala, N. Variankaval, P. Vishweshwar, D.R. Weyna and M.J. Zaworotko, Cryst. Growth Des., 12, 2147 (2012); https://doi.org/10.1021/cg3002948
A.S. Athira, S. Anu, S.R. Seeja and M.S. Thaifa, Int. J. Pharm. Res. Scholars, 7, 1 (2018); https://doi.org/10.31638/IJPRS.V7.I3.00050
C.R. Taylor and G.M. Day, Cryst. Growth Des., 18, 892 (2018); https://doi.org/10.1021/acs.cgd.7b01375
D. Braga, F. Grepioni, L. Maini and M. Polito, Eds.: M. Hosseini, Molecular Networks. Structure and Bonding, Springer: Berlin, Heidelberg, vol. 132, p. 87 (2009). https://doi.org/10.1007/978-3-642-01367-6_7
P.C.D. Hawkins, A.G. Skillman and A. Nicholls, J. Med. Chem., 50, 74 (2007); https://doi.org/10.1021/jm0603365
P. Vishweshwar, J.A. McMahon, J.A. Bis and M.J. Zaworotko, J. Pharm. Sci., 95, 499 (2006); https://doi.org/10.1002/jps.20578
S. Sedghiniya, J. Soleimannejad and J. Janczak, Acta Cryst., C75, 412 (2019). https://doi.org/10.1107/S2053229619003127
H.C. Joshi and L. Antonov, Molecules, 26, 1475 (2021); https://doi.org/10.3390/molecules26051475
A.B. Kama, E. Jeanneau, M. Sidibe, C.A.K. Diop and R. Gautier, J. Cryst. Growth, 528, 125267 (2019); https://doi.org/10.1016/j.jcrysgro.2019.125267
G.R. Desiraju, J.J. Vittal and A. Ramanan, Crystal Engineering-A Textbook, World Scientific, IISc Press, India (2011) .
A. Spitaleri, C.A. Hunter, J.F. McCabe, M.J. Packer and S.L. Cockroft, CrystEngComm, 6, 489 (2004); https://doi.org/10.1039/b407163h
C.A. Hunter and M.J. Packer, Chem. Eur. J., 5, 1891 (1999); https://doi.org/10.1002/(SICI)1521-3765(19990604)5:6<1891::AIDCHEM1891>3.0.CO;2-G
M. Gardner, A. J. Guerin, C. A. Hunter, U. Michelsen and C. Rotger, New J. Chem., 23, 309 (1999); https://doi.org/10.1039/a807876i
T. Asakura and M. Ishida, J. Colloid Interface Sci., 130, 184 (1989); https://doi.org/10.1016/0021-9797(89)90089-1
X. Ding, T.C. Stringfellow and J.R. Robinson, J. Pharm. Sci., 93, 1351 (2004); https://doi.org/10.1002/jps.20034
K. Shikii, S. Sakamoto, H. Seki, H. Utsumi and K. Yamaguchi, Tetrahedron, 60, 3487 (2004); https://doi.org/10.1016/j.tet.2004.02.030
A. Mukherjee, K. Dixit, S.P. Sarma and G.R. Desiraju, IUCrJ, 1, 228 (2014); https://doi.org/10.1107/S2052252514012081
V. Kumar, P.K. Goswami, R. Thaimattam and A. Ramanan, CrystEngComm, 20, 3490 (2018); https://doi.org/10.1039/C8CE00486B
M. Gelmont, O. Arad and J. Oren, Org. Process Res. Dev., 7, 121 (2003); https://doi.org/10.1021/op0200930
A. Davies, E. Felder and P. Tirone, Drugs Future, 15, 1074 (1990); https://doi.org/10.1358/dof.1990.015.11.147135
K. Biradha, M. Sarkar and L. Rajput, Chem. Commun., 40, 4169 (2006); https://doi.org/10.1039/B606184B
A. Ranganathan, V.R. Pedireddi, G. Sanjayan, K.N. Ganesh and C.N.R. Rao, J. Mol. Struct., 522, 87 (2000); https://doi.org/10.1016/S0022-2860(99)00356-7
M.-H. Zeng, W.-X. Zhang, X.-Z. Sun and X.-M. Chen, Angew. Chem. Int. Ed., 44, 3079 (2005); https://doi.org/10.1002/anie.200462463
S. Sobczak and A. Katrusiak, Cryst. Growth Des., 18, 1082 (2018); https://doi.org/10.1021/acs.cgd.7b01535