Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comparative Study of Counter Electrodes Affecting the Conversion Efficiency in Fabrication of Dye Sensitized Solar Cell using Mixture of Dyes in Different Solvents
Corresponding Author(s) : K.R. Genwa
Asian Journal of Chemistry,
Vol. 33 No. 12 (2021): Vol 33 Issue 12, 2021
Abstract
In this article, dye sensitized solar cell (DSSC) was fabricated and studied using various organic dyes, which were dissolved in three solvents viz. ethanol, double distilled water and DMSO. Furthermore, these cells were studied using different catalytic materials as counter electrode. Differences in conversion efficiencies were observed when used with platinum, poly(3,4-ethylenedioxythiophene)-poly(styrenesulphonate)[PEDOT:PSS]-graphite and graphite as a counter electrode. Each electrons generated from dye, after its exposure to sunlight, were injected into conduction band of semiconductor (titanium dioxide). These electrons then were collected for load via fluorine doped tin oxide glass electrode and arrive at counter electrode, to speed up the redox reaction with tri-iodide/iodide (I3–/I–) electrolyte. Firstly, high efficiencies were obtained for mixture of dyes when compared to results of their individual dyes, thus, showing the influence of mixture of dyes. Secondly varying counter electrode with photosensitizers viz. crystal violet B and Azur I gave conversion efficiency (η) in order platinum ≈ graphite-PEDOT: PSS > graphite.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Gerischer, M. Michel-Beyerle, E. Rebentrost and H. Tributsch, Electrochim. Acta, 13, 1509 (1968); https://doi.org/10.1016/0013-4686(68)80076-3
- H. Tributsch and M. Calvin, Photochem. Photobiol., 14, 95 (1971); https://doi.org/10.1111/j.1751-1097.1971.tb06156.x
- H. Tributsch, Photochem. Photobiol., 16, 261 (1972); https://doi.org/10.1111/j.1751-1097.1972.tb06297.x
- B.O. Regan and M. Gratzel, Nature, 353, 737 (1991); https://doi.org/10.1038/353737a0
- J. Kwon, M.J. Im, C.U. Kim, S.H. Won, S.B. Kang, S.H. Kang, I.T. Choi, H.K. Kim, I.H. Kim, J.H. Park and K.J. Choi, Energy Environ. Sci., 9, 3657 (2016); https://doi.org/10.1039/C6EE02296K
- I.N. Obotowo, I.B. Obot and U.J. Ekpe, J. Mol. Struct., 1122, 80 (2016); https://doi.org/10.1016/j.molstruc.2016.05.080
- M. Ishida, D. Hwang, Y.B. Koo, J. Sung, D.Y. Kim, J.L. Sessler and D. Kim, Chem. Commun., 49, 9164 (2013); https://doi.org/10.1039/c3cc44847a
- J. Wang, H. Li, N.N. Ma, L.K. Yan and Z.M. Su, Dyes Pigments, 99, 440 (2013); https://doi.org/10.1016/j.dyepig.2013.05.027
- B.S. Chen, K. Chen, Y.H. Hong, W.H. Liu, T.H. Li, C.H. Lai, P.T. Chou, Y. Chi and G.H. Lee, Chem. Commun., 5844 (2009); https://doi.org/10.1039/b914197a
- N. Manfredi, B. Cecconi and A. Abbotto, Eur. J. Org. Chem., 2014, 7069 (2014); https://doi.org/10.1002/ejoc.201402422
- S.J. Lind, K.C. Gordon, S. Gambhir and D.L. Officer, Phys. Chem. Chem. Phys., 11, 5598 (2009); https://doi.org/10.1039/b900988d
- R. Katoh, A. Furube, S. Mori, M. Miyashita, K. Sunahara, N. Koumura and K. Hara, Energy Environ. Sci., 2, 542 (2009); https://doi.org/10.1039/b900372j
- D.D. Babu, S.R. Gachumale, S. Anandan and A.V. Adhikari, Dyes Pigments, 112, 183 (2015); https://doi.org/10.1016/j.dyepig.2014.07.006
- G. Li, K.J. Jiang, Y.F. Li, S.L. Li and L.M. Yang, J. Phys. Chem. C, 112, 11591 (2008); https://doi.org/10.1021/jp802436v
- X. Liu, Z. Cao, H. Huang, X. Liu, Y. Tan, H. Chen, Y. Pei and S. Tan, J. Power Sources, 248, 400 (2014); https://doi.org/10.1016/j.jpowsour.2013.09.106
- D. Sahu, H. Padhy, D. Patra, J.F. Yin, Y.C. Hsu, J.-T.S. Lin, K.-L. Lu, K.-H. Wei and H.-C. Lin, Tetrahedron, 67, 303 (2011); https://doi.org/10.1016/j.tet.2010.11.044
- D.Y. Chen, Y.Y. Hsu, H.C. Hsu, B.S. Chen, Y.T. Lee, H. Fu, M.W. Chung, S.H. Liu, H.C. Chen, Y. Chi and P.T. Chou, Chem. Commun., 46, 5256 (2010); https://doi.org/10.1039/c0cc00808g
- K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara and H. Arakawa, Sol. Energy Mater. Sol. Cells, 77, 89 (2003); https://doi.org/10.1016/S0927-0248(02)00460-9
- S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin and M. Grätzel, Nat. Chem., 6, 242 (2014); https://doi.org/10.1038/nchem.1861
- R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq and Y.M. Irwan, Energy Procedia, 79, 896 (2015); https://doi.org/10.1016/j.egypro.2015.11.584
- C. Qin, D. Yang, P. Gu, X. Zhu and H. Sun, Funct. Mater. Lett., 11, 1850051 (2018); https://doi.org/10.1142/S1793604718500510
- H. Chang, H.M. Wu, T.L. Chen, K.D. Huang, C.S. Jwo and Y.J. Lo, J. Alloys Compd., 495, 606 (2010); https://doi.org/10.1016/j.jallcom.2009.10.057
- S. Hao, J. Wu, Y. Huang and J. Lin, Sol. Energy, 80, 209 (2006); https://doi.org/10.1016/j.solener.2005.05.009
- N.M. Gómez-Ortíz, I.A. Vázquez-Maldonado, A.R. Pérez-Espadas, G.J. Mena-Rejón, J.A. Azamar-Barrios and G. Oskam, Solar Cells, 94, 40 (2010); https://doi.org/10.1016/j.solmat.2009.05.013
- H. Zhou, L. Wu, Y. Gao and T. Ma, J. Photochem. Photobiol. Chem., 219, 188 (2011); https://doi.org/10.1016/j.jphotochem.2011.02.008
- K. Wongcharee, V. Meeyoo and S. Chavadej, Sol. Energy Mater. Sol. Cells, 91, 566 (2007); https://doi.org/10.1016/j.solmat.2006.11.005
- K. Kalyanasundaram and M. Grätzel, Coord. Chem. Rev., 177, 347 (1998); https://doi.org/10.1016/S0010-8545(98)00189-1
- S.A. Taya, T.M. El-Agez, H.S. El-Ghamri and M.S. Abdel-Latif, Int. J. Mater. Sci. Appl., 2, 37 (2013); https://doi.org/10.11648/j.ijmsa.20130202.11
- D. Wei, Int. J. Mol. Sci., 11, 1103 (2010); https://doi.org/10.3390/ijms11031103
- Q. Dai and J. Rabani, New J. Chem., 26, 421 (2002); https://doi.org/10.1039/b108390b
- A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 110, 6595 (2010); https://doi.org/10.1021/cr900356p
- https://www.pveducation.org/pvcdrom/solar-cell-operation/solar-cellefficiency.
- W. Price, J. Phys. D Appl. Phys., 5, 1127 (1972); https://doi.org/10.1088/0022-3727/5/6/315
- S. Ahmadi, N. Asim, M.A. Alghoul, F.Y. Hammadi, K. Saeedfar, N.A. Ludin, S.H. Zaidi and K. Sopian, Int. J. Photoenergy, 2014, 198734 (2014); https://doi.org/10.1155/2014/198734
References
H. Gerischer, M. Michel-Beyerle, E. Rebentrost and H. Tributsch, Electrochim. Acta, 13, 1509 (1968); https://doi.org/10.1016/0013-4686(68)80076-3
H. Tributsch and M. Calvin, Photochem. Photobiol., 14, 95 (1971); https://doi.org/10.1111/j.1751-1097.1971.tb06156.x
H. Tributsch, Photochem. Photobiol., 16, 261 (1972); https://doi.org/10.1111/j.1751-1097.1972.tb06297.x
B.O. Regan and M. Gratzel, Nature, 353, 737 (1991); https://doi.org/10.1038/353737a0
J. Kwon, M.J. Im, C.U. Kim, S.H. Won, S.B. Kang, S.H. Kang, I.T. Choi, H.K. Kim, I.H. Kim, J.H. Park and K.J. Choi, Energy Environ. Sci., 9, 3657 (2016); https://doi.org/10.1039/C6EE02296K
I.N. Obotowo, I.B. Obot and U.J. Ekpe, J. Mol. Struct., 1122, 80 (2016); https://doi.org/10.1016/j.molstruc.2016.05.080
M. Ishida, D. Hwang, Y.B. Koo, J. Sung, D.Y. Kim, J.L. Sessler and D. Kim, Chem. Commun., 49, 9164 (2013); https://doi.org/10.1039/c3cc44847a
J. Wang, H. Li, N.N. Ma, L.K. Yan and Z.M. Su, Dyes Pigments, 99, 440 (2013); https://doi.org/10.1016/j.dyepig.2013.05.027
B.S. Chen, K. Chen, Y.H. Hong, W.H. Liu, T.H. Li, C.H. Lai, P.T. Chou, Y. Chi and G.H. Lee, Chem. Commun., 5844 (2009); https://doi.org/10.1039/b914197a
N. Manfredi, B. Cecconi and A. Abbotto, Eur. J. Org. Chem., 2014, 7069 (2014); https://doi.org/10.1002/ejoc.201402422
S.J. Lind, K.C. Gordon, S. Gambhir and D.L. Officer, Phys. Chem. Chem. Phys., 11, 5598 (2009); https://doi.org/10.1039/b900988d
R. Katoh, A. Furube, S. Mori, M. Miyashita, K. Sunahara, N. Koumura and K. Hara, Energy Environ. Sci., 2, 542 (2009); https://doi.org/10.1039/b900372j
D.D. Babu, S.R. Gachumale, S. Anandan and A.V. Adhikari, Dyes Pigments, 112, 183 (2015); https://doi.org/10.1016/j.dyepig.2014.07.006
G. Li, K.J. Jiang, Y.F. Li, S.L. Li and L.M. Yang, J. Phys. Chem. C, 112, 11591 (2008); https://doi.org/10.1021/jp802436v
X. Liu, Z. Cao, H. Huang, X. Liu, Y. Tan, H. Chen, Y. Pei and S. Tan, J. Power Sources, 248, 400 (2014); https://doi.org/10.1016/j.jpowsour.2013.09.106
D. Sahu, H. Padhy, D. Patra, J.F. Yin, Y.C. Hsu, J.-T.S. Lin, K.-L. Lu, K.-H. Wei and H.-C. Lin, Tetrahedron, 67, 303 (2011); https://doi.org/10.1016/j.tet.2010.11.044
D.Y. Chen, Y.Y. Hsu, H.C. Hsu, B.S. Chen, Y.T. Lee, H. Fu, M.W. Chung, S.H. Liu, H.C. Chen, Y. Chi and P.T. Chou, Chem. Commun., 46, 5256 (2010); https://doi.org/10.1039/c0cc00808g
K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara and H. Arakawa, Sol. Energy Mater. Sol. Cells, 77, 89 (2003); https://doi.org/10.1016/S0927-0248(02)00460-9
S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin and M. Grätzel, Nat. Chem., 6, 242 (2014); https://doi.org/10.1038/nchem.1861
R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq and Y.M. Irwan, Energy Procedia, 79, 896 (2015); https://doi.org/10.1016/j.egypro.2015.11.584
C. Qin, D. Yang, P. Gu, X. Zhu and H. Sun, Funct. Mater. Lett., 11, 1850051 (2018); https://doi.org/10.1142/S1793604718500510
H. Chang, H.M. Wu, T.L. Chen, K.D. Huang, C.S. Jwo and Y.J. Lo, J. Alloys Compd., 495, 606 (2010); https://doi.org/10.1016/j.jallcom.2009.10.057
S. Hao, J. Wu, Y. Huang and J. Lin, Sol. Energy, 80, 209 (2006); https://doi.org/10.1016/j.solener.2005.05.009
N.M. Gómez-Ortíz, I.A. Vázquez-Maldonado, A.R. Pérez-Espadas, G.J. Mena-Rejón, J.A. Azamar-Barrios and G. Oskam, Solar Cells, 94, 40 (2010); https://doi.org/10.1016/j.solmat.2009.05.013
H. Zhou, L. Wu, Y. Gao and T. Ma, J. Photochem. Photobiol. Chem., 219, 188 (2011); https://doi.org/10.1016/j.jphotochem.2011.02.008
K. Wongcharee, V. Meeyoo and S. Chavadej, Sol. Energy Mater. Sol. Cells, 91, 566 (2007); https://doi.org/10.1016/j.solmat.2006.11.005
K. Kalyanasundaram and M. Grätzel, Coord. Chem. Rev., 177, 347 (1998); https://doi.org/10.1016/S0010-8545(98)00189-1
S.A. Taya, T.M. El-Agez, H.S. El-Ghamri and M.S. Abdel-Latif, Int. J. Mater. Sci. Appl., 2, 37 (2013); https://doi.org/10.11648/j.ijmsa.20130202.11
D. Wei, Int. J. Mol. Sci., 11, 1103 (2010); https://doi.org/10.3390/ijms11031103
Q. Dai and J. Rabani, New J. Chem., 26, 421 (2002); https://doi.org/10.1039/b108390b
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 110, 6595 (2010); https://doi.org/10.1021/cr900356p
https://www.pveducation.org/pvcdrom/solar-cell-operation/solar-cellefficiency.
W. Price, J. Phys. D Appl. Phys., 5, 1127 (1972); https://doi.org/10.1088/0022-3727/5/6/315
S. Ahmadi, N. Asim, M.A. Alghoul, F.Y. Hammadi, K. Saeedfar, N.A. Ludin, S.H. Zaidi and K. Sopian, Int. J. Photoenergy, 2014, 198734 (2014); https://doi.org/10.1155/2014/198734