Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Quantum Chemical Computational Studies on N-Acetylglycine Single Crystal for Potential Applications
Corresponding Author(s) : N. Kanagathara
Asian Journal of Chemistry,
Vol. 33 No. 12 (2021): Vol 33 Issue 12, 2021
Abstract
The crystals of N-acetylglycine were obtained by the slow evaporation of an aqueous solution at room temperature. Single crystal X-ray diffraction analysis reveals that the crystal belongs to monoclinic system with centro symmetric space group P21/c with lattice parameters are a = 4.8410(10) Å, b = 11.512(2) Å, c = 9.810(2) Å, α = 90º, β = 97.02(3)º, γ = 90º and V = 542.61 (Å)3. Quantum chemical computations have been performed on the grown crystal with DFT-B3LYP/6-311++G(d,p) basis set. The theoretically obtained geometrical parameters and vibrational frequencies are in close agreement with experimental data. HOMO-LUMO energy gap and molecular electrostatic potential map has also been calculated. The static and dynamic polarizability and first hyperpolarizability both were calculated to comprehend the potential applications of N-acetylglycine in nonlinear optics. Hirshfeld surface analysis has been performed to study the inter and intra molecular interactions between the molecule. Thus in present study, the structure-property relationship of novel N-acetylglycine molecule is studied for future nonlinear optical applications through experimental and theoretical approach.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Bee, N. Choudhary, A. Gupta and P. Tandon, Biopolymers, 101, 795 (2014); https://doi.org/10.1002/bip.22458
- B. Boeckx and G. Maes, J. Phys. Chem. A, 116, 1956 (2012); https://doi.org/10.1021/jp211382u
- R.E. Vizhi, R.A. Kumar, D.R. Babu, K. Sathiyanarayanan and G. Bhagavannarayana, Ferroelectrics, 413, 291 (2011); https://doi.org/10.1080/00150193.2011.531194
- J. Baran and A.M. Petrosyan, Ferroelectrics, 432, 117 (2012); https://doi.org/10.1080/00150193.2012.707879
- R. Notario, M.V. Roux, A.F.L.O.M. Santos and M.D.M.C. Ribeiro da Silva, J. Chem. Thermodyn., 73, 57 (2014); https://doi.org/10.1016/j.jct.2013.08.026
- V.J. Thanigaiarasu, N. Kanagathara, K. Senthilkumar, G. Anbalagan and M.K. Marchewka, J. Optoelectron. Adv. Mater., 22, 393 (2020).
- V.J. Thanigaiarasu, N. Kanagathara, R. Usha, V. Sabari and V. Natarajan, Asian J. Chem., 33, 203 (2020); https://doi.org/10.14233/ajchem.2021.22983
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09 Citation, Gaussian, Inc., Wallingford CT (2009).
- F. Weinhold and E.D. Glendening, NBO Version 3.1, TCI, Madison: University of Wisconsin (1998).
- J.B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc. Pittsburgh (1996).
- E.D. Glenening, A.E. Reed, J.E. Carpenter, F. Weinhold, J.A. Bohmann and C.M. Morales, NBO version 5.0, Theoretical Chemistry Institute University of Wisconsin Madison (2001).
- T.K. Kuruvilla, J.C. Prasana, S. Muthu and J. George, J. Mol. Struct., 1157, 519 (2018); https://doi.org/10.1016/j.molstruc.2018.01.001
- M. Khalid, A. Ali, M. Adeel, Z.U. Din, M.N. Tahir, E. Rodrigues-Filho, J. Iqbal and M.U. Khan, J. Mol. Struct., 1206, 127755 (2020); https://doi.org/10.1016/j.molstruc.2020.127755
- S. Tariq, M. Khalid, A.R. Raza, S.L. Rubab, S.F.A. Morais, M.U. Khan, M.N. Tahir and A.A.C. Braga, J. Mol. Struct., 1207, 127803 (2020); https://doi.org/10.1016/j.molstruc.2020.127803
- R. Zhang, B. Du, G. Sun and Y.X. Sun, Biomol. Spectrosc., 75, 1115 (2010); https://doi.org/10.1016/j.saa.2009.12.067
- K. Fukui, Theory of Orientation and Stereoselection, Reactivity and Structure, Concepts in Organic Chemistry, Springer: Berlin (1975).
- R.G. Parr, L.V. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
- M.V. Putz, The Scientific World J., 2013, 348415 (2013); https://doi.org/10.1155/2013/348415
- P.K. Chattaraj, U. Sarkar and D.R. Roy, Chem. Rev., 106, 2065 (2006); https://doi.org/10.1021/cr040109f
- P. Politzer and D.G. Truhlar, Chemical Applications of Atomic and Molecular Electrostatic Potentials; Plenum: New York, NY, USA (1981).
- J.S. Murray and K. Sen, Molecular Electrostatic Potentials: Concepts and Applications; Elsevier: Amsterdam, The Netherlands (1996).
- E. Scrocco and J. Tomasi, Eds.: P.O. Lowdin, Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Heuristic Interpretation by Means of Electrostatic Molecular Potentials, In: Advances in Quantum Chemistry, Academic Press, New York, p. 115 (1978).
- N. Kanagathara, R. Usha, V. Natarajan and M.K. Marchewka, Inorg. Nano Met Chem., (2021); https://doi.org/10.1080/24701556.2021.1891103
- S. Muthu and S. Renuga, Biomol. Spectrosc., 132, 313 (2014); https://doi.org/10.1016/j.saa.2014.05.009
- S. Gunasekaran, S. Kumaresan, R. Arunbalaji, G. Anand, S. Seshadri and S. Muthu, J. Raman Spectrosc., 40, 1675 (2009); https://doi.org/10.1002/jrs.2318
- M. Turner, J. McKinnon, S. Wolff, D. Grimwood, P. Spackman, D. Jayatilaka and M. Spackman, Crystal Explorer17, University of Western Australia Crawley, Western Australia, 541 Australia (2017).
- M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A
References
S. Bee, N. Choudhary, A. Gupta and P. Tandon, Biopolymers, 101, 795 (2014); https://doi.org/10.1002/bip.22458
B. Boeckx and G. Maes, J. Phys. Chem. A, 116, 1956 (2012); https://doi.org/10.1021/jp211382u
R.E. Vizhi, R.A. Kumar, D.R. Babu, K. Sathiyanarayanan and G. Bhagavannarayana, Ferroelectrics, 413, 291 (2011); https://doi.org/10.1080/00150193.2011.531194
J. Baran and A.M. Petrosyan, Ferroelectrics, 432, 117 (2012); https://doi.org/10.1080/00150193.2012.707879
R. Notario, M.V. Roux, A.F.L.O.M. Santos and M.D.M.C. Ribeiro da Silva, J. Chem. Thermodyn., 73, 57 (2014); https://doi.org/10.1016/j.jct.2013.08.026
V.J. Thanigaiarasu, N. Kanagathara, K. Senthilkumar, G. Anbalagan and M.K. Marchewka, J. Optoelectron. Adv. Mater., 22, 393 (2020).
V.J. Thanigaiarasu, N. Kanagathara, R. Usha, V. Sabari and V. Natarajan, Asian J. Chem., 33, 203 (2020); https://doi.org/10.14233/ajchem.2021.22983
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09 Citation, Gaussian, Inc., Wallingford CT (2009).
F. Weinhold and E.D. Glendening, NBO Version 3.1, TCI, Madison: University of Wisconsin (1998).
J.B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc. Pittsburgh (1996).
E.D. Glenening, A.E. Reed, J.E. Carpenter, F. Weinhold, J.A. Bohmann and C.M. Morales, NBO version 5.0, Theoretical Chemistry Institute University of Wisconsin Madison (2001).
T.K. Kuruvilla, J.C. Prasana, S. Muthu and J. George, J. Mol. Struct., 1157, 519 (2018); https://doi.org/10.1016/j.molstruc.2018.01.001
M. Khalid, A. Ali, M. Adeel, Z.U. Din, M.N. Tahir, E. Rodrigues-Filho, J. Iqbal and M.U. Khan, J. Mol. Struct., 1206, 127755 (2020); https://doi.org/10.1016/j.molstruc.2020.127755
S. Tariq, M. Khalid, A.R. Raza, S.L. Rubab, S.F.A. Morais, M.U. Khan, M.N. Tahir and A.A.C. Braga, J. Mol. Struct., 1207, 127803 (2020); https://doi.org/10.1016/j.molstruc.2020.127803
R. Zhang, B. Du, G. Sun and Y.X. Sun, Biomol. Spectrosc., 75, 1115 (2010); https://doi.org/10.1016/j.saa.2009.12.067
K. Fukui, Theory of Orientation and Stereoselection, Reactivity and Structure, Concepts in Organic Chemistry, Springer: Berlin (1975).
R.G. Parr, L.V. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
M.V. Putz, The Scientific World J., 2013, 348415 (2013); https://doi.org/10.1155/2013/348415
P.K. Chattaraj, U. Sarkar and D.R. Roy, Chem. Rev., 106, 2065 (2006); https://doi.org/10.1021/cr040109f
P. Politzer and D.G. Truhlar, Chemical Applications of Atomic and Molecular Electrostatic Potentials; Plenum: New York, NY, USA (1981).
J.S. Murray and K. Sen, Molecular Electrostatic Potentials: Concepts and Applications; Elsevier: Amsterdam, The Netherlands (1996).
E. Scrocco and J. Tomasi, Eds.: P.O. Lowdin, Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Heuristic Interpretation by Means of Electrostatic Molecular Potentials, In: Advances in Quantum Chemistry, Academic Press, New York, p. 115 (1978).
N. Kanagathara, R. Usha, V. Natarajan and M.K. Marchewka, Inorg. Nano Met Chem., (2021); https://doi.org/10.1080/24701556.2021.1891103
S. Muthu and S. Renuga, Biomol. Spectrosc., 132, 313 (2014); https://doi.org/10.1016/j.saa.2014.05.009
S. Gunasekaran, S. Kumaresan, R. Arunbalaji, G. Anand, S. Seshadri and S. Muthu, J. Raman Spectrosc., 40, 1675 (2009); https://doi.org/10.1002/jrs.2318
M. Turner, J. McKinnon, S. Wolff, D. Grimwood, P. Spackman, D. Jayatilaka and M. Spackman, Crystal Explorer17, University of Western Australia Crawley, Western Australia, 541 Australia (2017).
M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A