Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recent Advances in Tetrazole Derivatives as Potential Antiviral Agents: A Review
Corresponding Author(s) : Ruchika Yogesh
Asian Journal of Chemistry,
Vol. 33 No. 11 (2021): Vol 33 Issue 11, 2021
Abstract
Viruses use the host cell’s biochemical machinery for replication and survival; and also undergo mutations to evade the immune response and achieve better transmission. These features make it challenging to develop selective drugs to kill viruses only and not the host cells. New and effective pharmaceutical agents are required to overcome this challenge. Tetrazole moiety, as a bio-isostere of carboxylic acid/amide group, has been extensively used as a potent pharmacophore in several bioactivities. Intrigued by the necessity of finding new antiviral compounds and tendency of tetrazole scaffolds to render various bioactivity profiles, this review article comprising literature reports of tetrazole-based synthetic compounds with promising antiviral activity is presented. This review comprises significant literature reports from the scientific databases published during the past four decades. It is found that tetrazole based molecules are promising endeavor for the development of potential agents against influenza virus, HIV, HCV and other viruses.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.J. Bugert, F. Hucke, P. Zanetta, M. Bassetto and A. Brancale, Virus Genes, 56, 150 (2020); https://doi.org/10.1007/s11262-020-01737-5
- R.J. Herr, Bioorg. Med. Chem., 10, 3379 (2002); https://doi.org/10.1016/S0968-0896(02)00239-0
- S. Kumari, A. Carmona, A.K. Tiwari and P.C. Trippier, J. Med. Chem., 63, 12290 (2020); https://doi.org/10.1021/acs.jmedchem.0c00530
- M.A. Malik, M.Y. Wani, S.A. Al-Thabaiti and R.A. Shiekh, J. Incl. Phenom. Macrocycl. Chem., 78, 15 (2014); https://doi.org/10.1007/s10847-013-0334-x
- C. Biot, H. Bauer, R.H. Schirmer and E. Davioud-Charvet, J. Med. Chem., 47, 5972 (2004); https://doi.org/10.1021/jm0497545
- R.J. Nachman, J. Zabrocki, J. Olczak, H.J. Williams, G. Moyna, A. Ian Scott and G.M. Coast, Peptides, 23, 709 (2002); https://doi.org/10.1016/S0196-9781(01)00651-9
- J. Zabrocki, G. R. Marshall, Peptidomimetics Protocols, 417 (1999); https://doi.org/10.1385/0-89603-517-4:417
- J. Zabrocki, G.D. Smith, J.B. Dunbar, H. Iijima and G.R. Marshall, J. Am. Chem. Soc., 110, 5875 (1988); https://doi.org/10.1021/ja00225a045
- F.H. Allen, C.R. Groom, J.W. Liebeschuetz, D.A. Bardwell, T.S.G. Olsson and P.A. Wood, J. Chem. Inf. Model., 52, 857 (2012); https://doi.org/10.1021/ci200521k
- C. Araujo-Andrade, I. Reva and R. Fausto, J. Chem. Phys., 140, 064306 (2014); https://doi.org/10.1063/1.4864119
- Y. Zou, L. Liu, J. Liu and G. Liu, Future Med. Chem., 12, 91 (2020); https://doi.org/10.4155/fmc-2019-0288
- C.G. Neochoritis, T. Zhao and A. Dömling, Chem. Rev., 119, 1970 (2019); https://doi.org/10.1021/acs.chemrev.8b00564
- J. Wang, F. Li and C. Ma, Peptide Science, 104, 291 (2015); https://doi.org/10.1002/bip.22623
- D.V. Seliverstova, V.V. Suslonov, V.V. Zarubaev and R.E. Trifonov, Russ. J. Org. Chem., 54, 633 (2018); https://doi.org/10.1134/S107042801804019X
- O.V. Mikolaichuk, V.V. Zarubaev, A.A. Muryleva, Y.L. Esaulkova, D.V. Spasibenko, A.A. Batyrenko, I.V. Kornyakov and R.E. Trifonov, Chem. Heterocycl. Compd., 57, 442 (2021); https://doi.org/10.1007/s10593-021-02931-5
- T.M. Garaev, A.I. Odnovorov, E.S. Kirillova, E.I. Burtseva, M.P. Finogenova, E.A. Mukasheva and T.V. Grebennikova, Probl. Virol., 65, 16 (2020); https://doi.org/10.36233/0507-4088-2020-65-1-16-20
- V.V. Zarubaev, E.L. Golod, P.M. Anfimov, A.A. Shtro, V.V. Saraev, A.S. Gavrilov, A.V. Logvinov and O.I. Kiselev, Bioorg. Med. Chem., 18, 839 (2010); https://doi.org/10.1016/j.bmc.2009.11.047
- E.A. Popova, G.K. Ovsepyan, A.V. Protas, E.B. Erkhitueva, M.K. Kukhanova, Y.L. Yesaulkova, V.V. Zarubaev, G.L. Starova, R.V. Suezov, A.V. Eremin, V.A. Ostrovskii and R.E. Trifonov, Nucleos. Nucleot. Nucleic Acids, 38, 713 (2019); https://doi.org/10.1080/15257770.2018.1541466
- A.D. Zorina, A.S. Kaledina, I.A. Mocepuro, V.V. Anokhina, S.A. Marchenko, S.I. Selivanov, V.V. Zarubaev ad R.E. Trifonov, Russ. Org. Chem. J., 53, 1673 (2017); https://doi.org/10.1134/S1070428017110185
- K. Watanabe, T. Ishikawa, H. Otaki, S. Mizuta, T. Hamada, T. Nakagaki, D. Ishibashi, S. Urata, J. Yasuda, Y. Tanaka and N. Nishida, Sci. Rep., 7, 9500 (2017); https://doi.org/10.1038/s41598-017-10021-w
- V.A. Ostrovskii, G.G. Danagulyan, O.M. Nesterova, Y.N. Pavlyukova, V.V. Tolstyakov, O.S. Zarubina, P.À. Slepukhin, Y.L. Esaulkova, A.À. Muryleva, V.V. Zarubaev and R.E. Trifonov, Chem. Heterocycl. Compd., 57, 448 (2021); https://doi.org/10.1007/s10593-021-02922-6
- J. Zhang, Y. Hu, C. Foley, Y. Wang, R. Musharrafieh, S. Xu, Y. Zhang, C. Ma, C. Hulme and J. Wang, Sci. Rep., 8, 4653 (2018); https://doi.org/10.1038/s41598-018-22875-9
- D.W. Hutchinson and M. Naylor, Nucleic Acids Res., 13, 8519 (1985); https://doi.org/10.1093/nar/13.23.8519
- M.S. Poonian, E.F. Nowoswiat, J.F. Blount and M.J. Kramer, J. Med. Chem., 19, 1017 (1976); https://doi.org/10.1021/jm00230a008
- D.C. Crosby, X. Lei, C.G. Gibbs, B.R. McDougall, W.E. Robinson Jr. and M.G. Reinecke, J. Med. Chem., 53, 8161 (2010); https://doi.org/10.1021/jm1010594
- K.-S. Yeung, Z. Qiu, Q. Xue, H. Fang, Z. Yang, L. Zadjura, C.J. D’Arienzo, B.J. Eggers, K. Riccardi, P.-Y. Shi, Y.-F. Gong, M.R. Browning, Q. Gao, S. Hansel, K. Santone, P.-F. Lin, N.A. Meanwell and J.F. Kadow, Bioorg. Med. Chem. Lett., 23, 198 (2013); https://doi.org/10.1016/j.bmcl.2012.10.115
- K.S. Yeung, Z. Qiu, Z. Yin, A. Trehan, H. Fang, B. Pearce, Z. Yang, L. Zadjura, C.J. D’Arienzo, K. Riccardi, P.-Y. Shi, T.P. Spicer, Y.-F. Gong, M.R. Browning, S. Hansel, K. Santone, J. Barker, T. Coulter, P.-F. Lin, N.A. Meanwell and J.F. Kadow, Bioorg. Med. Chem. Lett., 23, 203 (2013); https://doi.org/10.1016/j.bmcl.2012.10.117
- K.S. Yeung, Z. Qiu, Z. Yang, L. Zadjura, C.J. D’Arienzo, M.R. Browning, S. Hansel, X.S. Huang, B.J. Eggers, K. Riccardi, P.F. Lin, N.A. Meanwell and J.F. Kadow, Bioorg. Med. Chem. Lett., 23, 209 (2013); https://doi.org/10.1016/j.bmcl.2012.10.125
- D.J. Hazuda, P. Felock, M. Witmer et al., Science, 287, 646 (2000); https://doi.org/10.1126/science.287.5453.646
- T. Fujishita and T. Yoshinaga, Indole derivatives with antiviral activity (Osaka, JP), PCT Int. Appl. WO 9950245, 1999; http://europepmc.org/article/PAT/WO9950245
- G.C.G. Pais, X. Zhang, C. Marchand, N. Neamati, K. Cowansage, E.S. Svarovskaia, V.K. Pathak, Y. Tang, M. Nicklaus, Y. Pommier and T.R. Burke, J. Med. Chem., 45, 3184 (2002); https://doi.org/10.1021/jm020037p
- L. Bosch, O. Delelis, F. Subra, E. Deprez, M. Witvrow and J. Vilarrasa, Tetrahedron Lett., 53, 514 (2012); https://doi.org/10.1016/j.tetlet.2011.11.079
- D. Häbich, Synthesis, 1992, 358 (1992); https://doi.org/10.1055/s-1992-26107
- T. Jiang, K.L. Kuhen, K. Wolff, H. Yin, K. Bieza, J. Caldwell, B. Bursulaya, T. Tuntland, K. Zhang, D. Karanewsky and Y. He, Bioorg. Med. Chem. Lett., 16, 2109 (2006); https://doi.org/10.1016/j.bmcl.2006.01.066
- E. Muraglia, O.D. Kinzel, R. Laufer, M.D. Miller, G. Moyer, V. Munshi, F. Orvieto, M.C. Palumbi, G. Pescatore, M. Rowley, P.D. Williams and V. Summa, Bioorg. Med. Chem. Lett., 16, 2748 (2006); https://doi.org/10.1016/j.bmcl.2006.02.024
- M.A. Walker, T.D. Johnson, O.K. Kim and Y. Zhang, US6548546B2, HIV integrase inhibitors, April 15, (2003); https://patents.google.com/patent/US6548546B2
- M.A. Walker, T. Johnson, Z. Ma, J. Banville, R. Remillard, O. Kim, Y. Zhang, A. Staab, H. Wong, A. Torri, H. Samanta, Z. Lin, C. Deminie, B. Terry, M. Krystal and N. Meanwell, Bioorg. Med. Chem. Lett., 16, 2920 (2006); https://doi.org/10.1016/j.bmcl.2006.03.010
- A. Bielenica, J. Stefañska, K. Stêpieñ, A. Napiórkowska, E. Augustynowicz-Kopeæ, G. Sanna, S. Madeddu, S. Boi, G. Giliberti, M. Wrzosek and M. Struga, Eur. J. Med. Chem., 101, 111 (2015); https://doi.org/10.1016/j.ejmech.2015.06.027
- A. Bielenica, D. Szulczyk, W. Olejarz, S. Madeddu, G. Giliberti, I.B. Materek, A.E. Koziol and M. Struga, Biomed. Pharmacother., 94, 804 (2017); https://doi.org/10.1016/j.biopha.2017.07.152
- B.C.H. May and A.D. Abell, J. Chem. Soc., Perkin Trans. I, 172 (2002); https://doi.org/10.1039/b109128j
- S.-X. Wang, Z. Fang, Z.-J. Fan, D. Wang, Y.-D. Li, X.-T. Ji, X.-W. Hua, Y. Huang, T.A. Kalinina, V.A. Bakulev and Y.Y. Morzherin, Chin. Chem. Lett., 24, 889 (2013); https://doi.org/10.1016/j.cclet.2013.05.026
- M.T. Abdel-Aal, W.A. El-Sayed, S.M. El-Kosy and E.S.H. El-Ashry, Arch. Pharm., 341, 307 (2008); https://doi.org/10.1002/ardp.200700154
- G.D. Diana, D. Cutcliffe, D.L. Volkots, J.P. Mallamo, T.R. Bailey, N. Vescio, R.C. Oglesby, T.J. Nitz and J. Wetzel, J. Med. Chem., 36, 3240 (1993); https://doi.org/10.1021/jm00074a004
- J.W. Guiles, Expert Opin. Ther. Pat., 7, 123 (1997); https://doi.org/10.1517/13543776.7.2.123
- C. Ma, Y. Hu, J. Zhang, R. Musharrafieh and J. Wang, ACS Infect. Dis., 5, 1952 (2019); https://doi.org/10.1021/acsinfecdis.9b00284
- C.S. Chang, Y.T. Lin, S.R. Shih, C.-C. Lee, Y.-C. Lee, C.-L. Tai, S.-N. Tseng and J.-H. Chern, J. Med. Chem., 48, 3522 (2005); https://doi.org/10.1021/jm050033v
- W.H. Song, M.M. Liu, D.W. Zhong, Y.L. Zhu, M. Bosscher, I. Zhou, D.Y. Ye and Z.H. Yuan, Bioorg. Med. Chem. Lett., 23, 4528 (2013); https://doi.org/10.1016/j.bmcl.2013.06.045
- R.B. Perni, S.D. Britt, J.C. Court, L.F. Courtney, D.D. Deininger, L.J. Farmer, C.A. Gates, S.L. Harbeson, J.L. Kim, J.A. Landro, R.B. Levin, Y.-P. Luong, E.T. O’Malley, J. Pitlik, B.G. Rao, W.C. Schairer, J.A. Thomson, R.D. Tung, J.H. Van Drie and Y. Wei, Bioorg. Med. Chem. Lett., 13, 4059 (2003); https://doi.org/10.1016/j.bmcl.2003.08.050
- D.X. Sun, L. Liu, B. Heinz, A. Kolykhalov, J. Lamar, R.B. Johnson, Q.M. Wang, Y. Yip and S.-H. Chen, Bioorg. Med. Chem. Lett., 14, 4333 (2004); https://doi.org/10.1016/j.bmcl.2004.05.078
- Z. Miao, Y. Sun, S. Nakajima, D. Tang, F. Wu, G. Xu, Y.S. Or and Z. Wang, Macrocyclic Hepatitis C Serine Protease Inhibitors, US Patent 2005153877 (2005).
- C.J. Cortés-García, L. Chacón-García, J.E. Mejía-Benavides and E. Díaz-Cervantes, Peer J. Physical Chem., 2, e10 (2020); https://doi.org/10.7717/peerj-pchem.10
- C.M. Aguilar-Morales, D. de Loera, C. Contreras-Celedón, C.J. CortésGarcía and L. Chacón-García, Synth. Commun., 49, 2086 (2019); https://doi.org/10.1080/00397911.2019.1616301
- W. Ni, X. Yang, D. Yang, J. Bao, R. Li, Y. Xiao, C. Hou, H. Wang, J. Liu, D. Yang, Y. Xu, Z. Cao and Z. Gao, Crit. Care, 24, 1 (2020); https://doi.org/10.1186/s13054-020-03120-0
- D.L. McKee, A. Sternberg, U. Stange, S. Laufer and C. Naujokat, Pharmacol. Res., 157, 104859 (2020); https://doi.org/10.1016/j.phrs.2020.104859
- P. Zhan, Z. Li, X. Liu and E. De Clercq, Mini Rev. Med. Chem., 9, 1014 (2009); https://doi.org/10.2174/138955709788681618
References
J.J. Bugert, F. Hucke, P. Zanetta, M. Bassetto and A. Brancale, Virus Genes, 56, 150 (2020); https://doi.org/10.1007/s11262-020-01737-5
R.J. Herr, Bioorg. Med. Chem., 10, 3379 (2002); https://doi.org/10.1016/S0968-0896(02)00239-0
S. Kumari, A. Carmona, A.K. Tiwari and P.C. Trippier, J. Med. Chem., 63, 12290 (2020); https://doi.org/10.1021/acs.jmedchem.0c00530
M.A. Malik, M.Y. Wani, S.A. Al-Thabaiti and R.A. Shiekh, J. Incl. Phenom. Macrocycl. Chem., 78, 15 (2014); https://doi.org/10.1007/s10847-013-0334-x
C. Biot, H. Bauer, R.H. Schirmer and E. Davioud-Charvet, J. Med. Chem., 47, 5972 (2004); https://doi.org/10.1021/jm0497545
R.J. Nachman, J. Zabrocki, J. Olczak, H.J. Williams, G. Moyna, A. Ian Scott and G.M. Coast, Peptides, 23, 709 (2002); https://doi.org/10.1016/S0196-9781(01)00651-9
J. Zabrocki, G. R. Marshall, Peptidomimetics Protocols, 417 (1999); https://doi.org/10.1385/0-89603-517-4:417
J. Zabrocki, G.D. Smith, J.B. Dunbar, H. Iijima and G.R. Marshall, J. Am. Chem. Soc., 110, 5875 (1988); https://doi.org/10.1021/ja00225a045
F.H. Allen, C.R. Groom, J.W. Liebeschuetz, D.A. Bardwell, T.S.G. Olsson and P.A. Wood, J. Chem. Inf. Model., 52, 857 (2012); https://doi.org/10.1021/ci200521k
C. Araujo-Andrade, I. Reva and R. Fausto, J. Chem. Phys., 140, 064306 (2014); https://doi.org/10.1063/1.4864119
Y. Zou, L. Liu, J. Liu and G. Liu, Future Med. Chem., 12, 91 (2020); https://doi.org/10.4155/fmc-2019-0288
C.G. Neochoritis, T. Zhao and A. Dömling, Chem. Rev., 119, 1970 (2019); https://doi.org/10.1021/acs.chemrev.8b00564
J. Wang, F. Li and C. Ma, Peptide Science, 104, 291 (2015); https://doi.org/10.1002/bip.22623
D.V. Seliverstova, V.V. Suslonov, V.V. Zarubaev and R.E. Trifonov, Russ. J. Org. Chem., 54, 633 (2018); https://doi.org/10.1134/S107042801804019X
O.V. Mikolaichuk, V.V. Zarubaev, A.A. Muryleva, Y.L. Esaulkova, D.V. Spasibenko, A.A. Batyrenko, I.V. Kornyakov and R.E. Trifonov, Chem. Heterocycl. Compd., 57, 442 (2021); https://doi.org/10.1007/s10593-021-02931-5
T.M. Garaev, A.I. Odnovorov, E.S. Kirillova, E.I. Burtseva, M.P. Finogenova, E.A. Mukasheva and T.V. Grebennikova, Probl. Virol., 65, 16 (2020); https://doi.org/10.36233/0507-4088-2020-65-1-16-20
V.V. Zarubaev, E.L. Golod, P.M. Anfimov, A.A. Shtro, V.V. Saraev, A.S. Gavrilov, A.V. Logvinov and O.I. Kiselev, Bioorg. Med. Chem., 18, 839 (2010); https://doi.org/10.1016/j.bmc.2009.11.047
E.A. Popova, G.K. Ovsepyan, A.V. Protas, E.B. Erkhitueva, M.K. Kukhanova, Y.L. Yesaulkova, V.V. Zarubaev, G.L. Starova, R.V. Suezov, A.V. Eremin, V.A. Ostrovskii and R.E. Trifonov, Nucleos. Nucleot. Nucleic Acids, 38, 713 (2019); https://doi.org/10.1080/15257770.2018.1541466
A.D. Zorina, A.S. Kaledina, I.A. Mocepuro, V.V. Anokhina, S.A. Marchenko, S.I. Selivanov, V.V. Zarubaev ad R.E. Trifonov, Russ. Org. Chem. J., 53, 1673 (2017); https://doi.org/10.1134/S1070428017110185
K. Watanabe, T. Ishikawa, H. Otaki, S. Mizuta, T. Hamada, T. Nakagaki, D. Ishibashi, S. Urata, J. Yasuda, Y. Tanaka and N. Nishida, Sci. Rep., 7, 9500 (2017); https://doi.org/10.1038/s41598-017-10021-w
V.A. Ostrovskii, G.G. Danagulyan, O.M. Nesterova, Y.N. Pavlyukova, V.V. Tolstyakov, O.S. Zarubina, P.À. Slepukhin, Y.L. Esaulkova, A.À. Muryleva, V.V. Zarubaev and R.E. Trifonov, Chem. Heterocycl. Compd., 57, 448 (2021); https://doi.org/10.1007/s10593-021-02922-6
J. Zhang, Y. Hu, C. Foley, Y. Wang, R. Musharrafieh, S. Xu, Y. Zhang, C. Ma, C. Hulme and J. Wang, Sci. Rep., 8, 4653 (2018); https://doi.org/10.1038/s41598-018-22875-9
D.W. Hutchinson and M. Naylor, Nucleic Acids Res., 13, 8519 (1985); https://doi.org/10.1093/nar/13.23.8519
M.S. Poonian, E.F. Nowoswiat, J.F. Blount and M.J. Kramer, J. Med. Chem., 19, 1017 (1976); https://doi.org/10.1021/jm00230a008
D.C. Crosby, X. Lei, C.G. Gibbs, B.R. McDougall, W.E. Robinson Jr. and M.G. Reinecke, J. Med. Chem., 53, 8161 (2010); https://doi.org/10.1021/jm1010594
K.-S. Yeung, Z. Qiu, Q. Xue, H. Fang, Z. Yang, L. Zadjura, C.J. D’Arienzo, B.J. Eggers, K. Riccardi, P.-Y. Shi, Y.-F. Gong, M.R. Browning, Q. Gao, S. Hansel, K. Santone, P.-F. Lin, N.A. Meanwell and J.F. Kadow, Bioorg. Med. Chem. Lett., 23, 198 (2013); https://doi.org/10.1016/j.bmcl.2012.10.115
K.S. Yeung, Z. Qiu, Z. Yin, A. Trehan, H. Fang, B. Pearce, Z. Yang, L. Zadjura, C.J. D’Arienzo, K. Riccardi, P.-Y. Shi, T.P. Spicer, Y.-F. Gong, M.R. Browning, S. Hansel, K. Santone, J. Barker, T. Coulter, P.-F. Lin, N.A. Meanwell and J.F. Kadow, Bioorg. Med. Chem. Lett., 23, 203 (2013); https://doi.org/10.1016/j.bmcl.2012.10.117
K.S. Yeung, Z. Qiu, Z. Yang, L. Zadjura, C.J. D’Arienzo, M.R. Browning, S. Hansel, X.S. Huang, B.J. Eggers, K. Riccardi, P.F. Lin, N.A. Meanwell and J.F. Kadow, Bioorg. Med. Chem. Lett., 23, 209 (2013); https://doi.org/10.1016/j.bmcl.2012.10.125
D.J. Hazuda, P. Felock, M. Witmer et al., Science, 287, 646 (2000); https://doi.org/10.1126/science.287.5453.646
T. Fujishita and T. Yoshinaga, Indole derivatives with antiviral activity (Osaka, JP), PCT Int. Appl. WO 9950245, 1999; http://europepmc.org/article/PAT/WO9950245
G.C.G. Pais, X. Zhang, C. Marchand, N. Neamati, K. Cowansage, E.S. Svarovskaia, V.K. Pathak, Y. Tang, M. Nicklaus, Y. Pommier and T.R. Burke, J. Med. Chem., 45, 3184 (2002); https://doi.org/10.1021/jm020037p
L. Bosch, O. Delelis, F. Subra, E. Deprez, M. Witvrow and J. Vilarrasa, Tetrahedron Lett., 53, 514 (2012); https://doi.org/10.1016/j.tetlet.2011.11.079
D. Häbich, Synthesis, 1992, 358 (1992); https://doi.org/10.1055/s-1992-26107
T. Jiang, K.L. Kuhen, K. Wolff, H. Yin, K. Bieza, J. Caldwell, B. Bursulaya, T. Tuntland, K. Zhang, D. Karanewsky and Y. He, Bioorg. Med. Chem. Lett., 16, 2109 (2006); https://doi.org/10.1016/j.bmcl.2006.01.066
E. Muraglia, O.D. Kinzel, R. Laufer, M.D. Miller, G. Moyer, V. Munshi, F. Orvieto, M.C. Palumbi, G. Pescatore, M. Rowley, P.D. Williams and V. Summa, Bioorg. Med. Chem. Lett., 16, 2748 (2006); https://doi.org/10.1016/j.bmcl.2006.02.024
M.A. Walker, T.D. Johnson, O.K. Kim and Y. Zhang, US6548546B2, HIV integrase inhibitors, April 15, (2003); https://patents.google.com/patent/US6548546B2
M.A. Walker, T. Johnson, Z. Ma, J. Banville, R. Remillard, O. Kim, Y. Zhang, A. Staab, H. Wong, A. Torri, H. Samanta, Z. Lin, C. Deminie, B. Terry, M. Krystal and N. Meanwell, Bioorg. Med. Chem. Lett., 16, 2920 (2006); https://doi.org/10.1016/j.bmcl.2006.03.010
A. Bielenica, J. Stefañska, K. Stêpieñ, A. Napiórkowska, E. Augustynowicz-Kopeæ, G. Sanna, S. Madeddu, S. Boi, G. Giliberti, M. Wrzosek and M. Struga, Eur. J. Med. Chem., 101, 111 (2015); https://doi.org/10.1016/j.ejmech.2015.06.027
A. Bielenica, D. Szulczyk, W. Olejarz, S. Madeddu, G. Giliberti, I.B. Materek, A.E. Koziol and M. Struga, Biomed. Pharmacother., 94, 804 (2017); https://doi.org/10.1016/j.biopha.2017.07.152
B.C.H. May and A.D. Abell, J. Chem. Soc., Perkin Trans. I, 172 (2002); https://doi.org/10.1039/b109128j
S.-X. Wang, Z. Fang, Z.-J. Fan, D. Wang, Y.-D. Li, X.-T. Ji, X.-W. Hua, Y. Huang, T.A. Kalinina, V.A. Bakulev and Y.Y. Morzherin, Chin. Chem. Lett., 24, 889 (2013); https://doi.org/10.1016/j.cclet.2013.05.026
M.T. Abdel-Aal, W.A. El-Sayed, S.M. El-Kosy and E.S.H. El-Ashry, Arch. Pharm., 341, 307 (2008); https://doi.org/10.1002/ardp.200700154
G.D. Diana, D. Cutcliffe, D.L. Volkots, J.P. Mallamo, T.R. Bailey, N. Vescio, R.C. Oglesby, T.J. Nitz and J. Wetzel, J. Med. Chem., 36, 3240 (1993); https://doi.org/10.1021/jm00074a004
J.W. Guiles, Expert Opin. Ther. Pat., 7, 123 (1997); https://doi.org/10.1517/13543776.7.2.123
C. Ma, Y. Hu, J. Zhang, R. Musharrafieh and J. Wang, ACS Infect. Dis., 5, 1952 (2019); https://doi.org/10.1021/acsinfecdis.9b00284
C.S. Chang, Y.T. Lin, S.R. Shih, C.-C. Lee, Y.-C. Lee, C.-L. Tai, S.-N. Tseng and J.-H. Chern, J. Med. Chem., 48, 3522 (2005); https://doi.org/10.1021/jm050033v
W.H. Song, M.M. Liu, D.W. Zhong, Y.L. Zhu, M. Bosscher, I. Zhou, D.Y. Ye and Z.H. Yuan, Bioorg. Med. Chem. Lett., 23, 4528 (2013); https://doi.org/10.1016/j.bmcl.2013.06.045
R.B. Perni, S.D. Britt, J.C. Court, L.F. Courtney, D.D. Deininger, L.J. Farmer, C.A. Gates, S.L. Harbeson, J.L. Kim, J.A. Landro, R.B. Levin, Y.-P. Luong, E.T. O’Malley, J. Pitlik, B.G. Rao, W.C. Schairer, J.A. Thomson, R.D. Tung, J.H. Van Drie and Y. Wei, Bioorg. Med. Chem. Lett., 13, 4059 (2003); https://doi.org/10.1016/j.bmcl.2003.08.050
D.X. Sun, L. Liu, B. Heinz, A. Kolykhalov, J. Lamar, R.B. Johnson, Q.M. Wang, Y. Yip and S.-H. Chen, Bioorg. Med. Chem. Lett., 14, 4333 (2004); https://doi.org/10.1016/j.bmcl.2004.05.078
Z. Miao, Y. Sun, S. Nakajima, D. Tang, F. Wu, G. Xu, Y.S. Or and Z. Wang, Macrocyclic Hepatitis C Serine Protease Inhibitors, US Patent 2005153877 (2005).
C.J. Cortés-García, L. Chacón-García, J.E. Mejía-Benavides and E. Díaz-Cervantes, Peer J. Physical Chem., 2, e10 (2020); https://doi.org/10.7717/peerj-pchem.10
C.M. Aguilar-Morales, D. de Loera, C. Contreras-Celedón, C.J. CortésGarcía and L. Chacón-García, Synth. Commun., 49, 2086 (2019); https://doi.org/10.1080/00397911.2019.1616301
W. Ni, X. Yang, D. Yang, J. Bao, R. Li, Y. Xiao, C. Hou, H. Wang, J. Liu, D. Yang, Y. Xu, Z. Cao and Z. Gao, Crit. Care, 24, 1 (2020); https://doi.org/10.1186/s13054-020-03120-0
D.L. McKee, A. Sternberg, U. Stange, S. Laufer and C. Naujokat, Pharmacol. Res., 157, 104859 (2020); https://doi.org/10.1016/j.phrs.2020.104859
P. Zhan, Z. Li, X. Liu and E. De Clercq, Mini Rev. Med. Chem., 9, 1014 (2009); https://doi.org/10.2174/138955709788681618