Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Pectin-Based Nanomaterials: Synthesis, Toxicity and Applications: A Review
Corresponding Author(s) : Vineet Kumar
Asian Journal of Chemistry,
Vol. 33 No. 11 (2021): Vol 33 Issue 11, 2021
Abstract
Nanomaterials of biological origin are very useful for drug delivery applications. The stability, biodegradability and biocompatibility of pectin nanomaterials in the human body make them an effective drug carrier. This review focus on different aspect of synthesis, drug encapsulation, drug release and safety of pectin-based nanomaterials. The nanomaterials can be used for the delivery of different hydrophilic and hydrophobic drugs to various organs. The release kinetics of drug loaded pectin-based nanoparticles can be studied in vitro as well as in vivo. The pectin-based nanomaterials have good pharmaco-kinetics and can ensure controlled drug delivery. However, the toxicity of pectin-based nanomaterials to human body needs to be evaluated carefully before industrial scale application.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Mohnen, Curr. Opin. Plant Biol., 11, 266 (2008); https://doi.org/10.1016/j.pbi.2008.03.006
- P. Sriamornsak, Expert Opin. Drug Deliv., 8, 1009 (2011); https://doi.org/10.1517/17425247.2011.584867
- P. Sriamornsak, N. Thirawong and S. Puttipipatkhachorn, Eur. J. Pharm. Sci., 24, 363 (2005); https://doi.org/10.1016/j.ejps.2004.12.004
- K. Burapapadh, H. Takeuchi and P. Sriamornsak, Asian J. Pharm. Sci., 11, 365 (2016); https://doi.org/10.1016/j.ajps.2015.07.003
- I. Fraeye, T. Duvetter, E. Doungla, A. Van Loey and M. Hendrickx, Trends Food Sci. Technol., 21, 219 (2010); https://doi.org/10.1016/j.tifs.2010.02.001
- C.G. Otoni, M.R. Moura, F.A. Aouada, G.P. Camilloto, R.S. Cruz, M.V. Lorevice, N.F.F. Soares and L.H.C. Mattoso, Food Hydrocoll., 41, 188 (2014); https://doi.org/10.1016/j.foodhyd.2014.04.013
- O. Munjeri, P. Hodza, E.E. Osim and C.T. Musabayane, J. Pharm. Sci., 87, 905 (1998); https://doi.org/10.1021/js9801283
- P.S.K. Murthy, Y. Murali Mohan, K. Varaprasad, B. Sreedhar and K. Mohana Raju, J. Colloid Interface Sci., 318, 217 (2008); https://doi.org/10.1016/j.jcis.2007.10.014
- P. Reddy, S. Eswaramma, K.S. Krishna Rao and Y.I. Lee, Bull. Korean Chem. Soc., 35, 2391 (2014); https://doi.org/10.5012/bkcs.2014.35.8.2391
- G.T. Grant, E.R. Morris, D.A. Rees, P.J. Smith and D. Thom, FEBS Lett., 32, 195 (1973); https://doi.org/10.1016/0014-5793(73)80770-7
- C. Lv, Y. Wang, L.J. Wang, D. Li and B. Adhikari, Carbohydr. Polym., 95, 233 (2013); https://doi.org/10.1016/j.carbpol.2013.02.062
- E.D. Ngouémazong, S. Christiaens, A. Shpigelman, A. Van Loey and M. Hendrickx, Compr. Rev. Food Sci. Food Saf., 14, 705 (2015); https://doi.org/10.1111/1541-4337.12160
- G. Ávila, D. De Leonardis, G. Grilli, C. Lecchi and F. Ceciliani, Vet. Immunol. Immunopathol., 237, 110269 (2021); https://doi.org/10.1016/j.vetimm.2021.110269
- N.A. Peppas, P. Bures, W.S. Leobandung and H. Ichikawa, Eur. J. Pharm. Biopharm., 50, 27 (2000); https://doi.org/10.1016/S0939-6411(00)00090-4
- V.R. Sinha and R. Kumria, Int. J. Pharm., 224, 19 (2001); https://doi.org/10.1016/S0378-5173(01)00720-7
- L. Liu, M.L. Fishman, J. Kost and K.B. Hicks, Biomaterials, 24, 3333 (2003); https://doi.org/10.1016/S0142-9612(03)00213-8
- N.A. Nafee, F.A. Ismail, N.A. Boraie and L.M. Mortada, Drug Dev. Ind. Pharm., 30, 985 (2004); https://doi.org/10.1081/DDC-200037245
- C. Valenta, Adv. Drug Deliv. Rev., 57, 1692 (2005); https://doi.org/10.1016/j.addr.2005.07.004
- L. Liu, M.L. Fishman and K.B. Hicks, Cellul., 14, 15 (2006); https://doi.org/10.1007/s10570-006-9095-7
- S. Chelladurai, M. Mishra and B. Mishra, Chem. Pharm. Bull. (Tokyo), 56, 1596 (2008); https://doi.org/10.1248/cpb.56.1596
- N. Thirawong, J. Thongborisute, H. Takeuchi and P. Sriamornsak, J. Control. Rel., 125, 236 (2008); https://doi.org/10.1016/j.jconrel.2007.10.023
- D.W. Heitman, W.E. Hardman and I.L. Cameron, Carcinogenesis, 13, 815 (1992); https://doi.org/10.1093/carcin/13.5.815
- D. Platt and A. Raz, JNCI: J. National Can. Inst., 84, 438 (1992); https://doi.org/10.1093/jnci/84.6.438
- K.J. Pienta, H. Nailk, A. Akhtar, K. Yamazaki, T.S. Replogle, J. Lehr, T.L. Donat, L. Tait, V. Hogan and A. Raz, JNCI: J. National Can. Inst., 87, 348 (1995); https://doi.org/10.1093/jnci/87.5.348
- P. Nangia-Makker, V. Hogan, Y. Honjo, S. Baccarini, L. Tait, R. Bresalier and A. Raz, J. Natl. Cancer Inst., 94, 1854 (2002); https://doi.org/10.1093/jnci/94.24.1854
- V.V. Glinsky and A. Raz, Carbohydr. Res., 344, 1788 (2009); https://doi.org/10.1016/j.carres.2008.08.038
- W.C. Chang, R.S. Chapkin and J.R. Lupton, Carcinogenesis, 18, 721 (1997); https://doi.org/10.1093/carcin/18.4.721
- C. Avivi-Green, S. PolakCharcon, Z. Madar and B. Schwartz, J. Cell. Biochem., 77, 18 (2000); https://doi.org/10.1002/(SICI)1097-4644(20000401)77:1<18::AIDJCB3>3.0.CO;2-1
- C.A. Avivi-Green, Z.E. Madar and B.E. Schwartz, Int. J. Mol. Med., 6, 689 (2000); https://doi.org/10.3892/ijmm.6.6.689
- G.E. Kossoy, H. Ben-Hur, A. Stark, I. Zusman and Z. Madar, Oncol. Rep., 8, 1387 (2001); https://doi.org/10.3892/or.8.6.1387
- E. Olano-Martin, G.H. Rimbach, G.R. Gibson and R.A. Rastall, Anticancer Res., 23(1A), 341 (2003).
- D. Chauhan, G. Li, K. Podar, T. Hideshima, P. Neri, D. He, N. Mitsiades, P. Richardson, Y. Chang, J. Schindler, B. Carver and K.C. Anderson, Cancer Res., 65, 8350 (2005); https://doi.org/10.1158/0008-5472.CAN-05-0163
- C.L. Jackson, T.M. Dreaden, L.K. Theobald, N.M. Tran, T.L. Beal, M. Eid, M.Y. Gao, R.B. Shirley, M.T. Stoffel, M.V. Kumar and D. Mohnen, Glycobiol., 17, 805 (2007); https://doi.org/10.1093/glycob/cwm054
- F.A. Munarin, M.C. Tanzi and P.A. Petrini, Int. J. Biol. Macromol., 51, 681 (2012); https://doi.org/10.1016/j.ijbiomac.2012.07.002
- F. Naqash, F.A. Masoodi, S.A. Rather, S.M. Wani and A. Gani, Carbohydr. Polym., 168, 227 (2017); https://doi.org/10.1016/j.carbpol.2017.03.058
- S.L. Kosaraju, Crit. Rev. Food Sci. Nutr., 45, 251 (2005); https://doi.org/10.1080/10408690490478091
- L. Neufeld and H. Bianco-Peled, Int. J. Biol. Macromol., 101, 852 (2017); https://doi.org/10.1016/j.ijbiomac.2017.03.167
- T.W. Wong, G. Colombo and F. Sonvico, AAPS PharmSciTech, 12, 201 (2011); https://doi.org/10.1208/s12249-010-9564-z
- A. Zong, H. Cao and F. Wang, Carbohydr. Polym., 90, 1395 (2012); https://doi.org/10.1016/j.carbpol.2012.07.026
- J.D. Kingsley, H. Dou, J. Morehead, B. Rabinow, H.E. Gendelman and C.J. Destache, J. Neuroimmune Pharmacol., 1, 340 (2006); https://doi.org/10.1007/s11481-006-9032-4
- S.G. Fullana, H. Ternet, M. Freche, J.L. Lacout and F. Rodriguez, Acta Biomater., 6, 2294 (2010); https://doi.org/10.1016/j.actbio.2009.11.019
- M. Saffran, G.S. Kumar, C. Savariar, J.C. Burnham, F. Williams and D.C. Neckers, Science, 233, 1081 (1986); https://doi.org/10.1126/science.3526553
- M. Saffran, J.B. Field, J. Pena, R.H. Jones and Y. Okuda, J. Endocrinol., 131, 267 (1991); https://doi.org/10.1677/joe.0.1310267
- L. Yang, J.S. Chu and J.A. Fix, Int. J. Pharm., 235, 1 (2002); https://doi.org/10.1016/S0378-5173(02)00004-2
- S.K. Niture and L. Refai, Am. J. Pharmacol. Toxicol., 8, 9 (2013); https://doi.org/10.3844/ajptsp.2013.9.19
- L. Delphi and H. Sepehri, Biomed. Pharmacother., 84, 637 (2016); https://doi.org/10.1016/j.biopha.2016.09.080
- L. Leclere, M. Fransolet, F. Cote, P. Cambier, T. Arnould, P. Van Cutsem and C. Michiels, PLoS One, 10, e0115831 (2015); https://doi.org/10.1371/journal.pone.0115831
- M.M. Joseph, S.R. Aravind, S.K. George, K. Raveendran Pillai, S. Mini and T.T. Sreelekha, Eur. J. Pharm. Biopharm., 93, 183 (2015); https://doi.org/10.1016/j.ejpb.2015.04.001
- Y. Zhang, T. Sun and C. Jiang, Acta Pharm. Sin. B, 8, 34 (2018); https://doi.org/10.1016/j.apsb.2017.11.005
- B.B. Mishra, B.B. Patel and S. Tiwari, Nanomedicine, 6, 9 (2010); https://doi.org/10.1016/j.nano.2009.04.008
- Z. Izadi, A. Divsalar, A.A. Saboury and L. Sawyer, Chem. Biol. Drug Des., 88, 209 (2016); https://doi.org/10.1111/cbdd.12748
- Y.S. Ovodov, Russ. J. Bioorgan. Chem., 35, 269 (2009); https://doi.org/10.1134/S1068162009030017
- K. Burapapadh, H. Takeuchi and P. Sriamornsak, Eur. J. Pharm. Biopharm., 82, 250 (2012); https://doi.org/10.1016/j.ejpb.2012.07.010
- C. Chittasupho, M. Jaturanpinyo and S. Mangmool, Drug Deliv., 20, 1 (2013); https://doi.org/10.3109/10717544.2012.739214
- Y. Zhang, T. Chen, P. Yuan, R. Tian, W. Hu, Y. Tang, Y. Jia and L. Zhang, Carbohydr. Polym., 133, 31 (2015); https://doi.org/10.1016/j.carbpol.2015.06.102
- A.K. Verma, A. Chanchal and A. Kumar, Potential of Negatively Charged Pectin Nanoparticles Encapsulating Paclitaxel: Preparation & Characterization. In2011 International Conference on Nanoscience, Technology and Societal Implications. IEEE, pp. 1-8 (2011).
- F. Ji, J. Li, Z. Qin, B. Yang, E. Zhang, D. Dong, J. Wang, Y. Wen, L. Tian and F. Yao, Carbohydr. Polym., 177, 86 (2017); https://doi.org/10.1016/j.carbpol.2017.08.107
- Y. Liu, Y. Zong, Z. Yang, M. Luo, G. Li, W. Yingsa, Y. Cao, M. Xiao, T. Kong, J. He, X. Liu and J. Lei, ACS Sustain. Chem. Eng., 7, 3614 (2019); https://doi.org/10.1021/acssuschemeng.8b06586
- R.K. Dutta and S. Sahu, Results Pharma Sci., 2, 38 (2012); https://doi.org/10.1016/j.rinphs.2012.05.001
- C.Y. Yu, H. Cao, X.C. Zhang, F.Z. Zhou, S.X. Cheng, X.Z. Zhang and R.X. Zhuo, Langmuir, 25, 11720 (2009); https://doi.org/10.1021/la901389v
- R. Sharma, M. Ahuja and H. Kaur, Carbohydr. Polym., 87, 1606 (2012); https://doi.org/10.1016/j.carbpol.2011.09.065
- P. Kumar, V. Kumar, R. Kumar and C.I. Pruncu, Nanomaterial, 10, 1452 (2020); https://doi.org/10.3390/nano10081452
- S. Borker and V. Pokharkar, Artif. Cells Nanomed. Biotechnol., 46(sup2), 826 (2018); https://doi.org/10.1080/21691401.2018.1470525
- M.B. Subudhi, A. Jain, A. Jain, P. Hurkat, S. Shilpi, A. Gulbake and S.K. Jain, Materials, 8, 832 (2015); https://doi.org/10.3390/ma8030832
- K. Cheng and L.Y. Lim, Drug Dev. Ind. Pharm., 30, 359 (2004); https://doi.org/10.1081/DDC-120030930
- S. Wen, J. Ou, R. Luo, W. Liang, P. OuYang and F. Zeng, J. Pharm. Biomed. Sci., 5, 385 (2015).
- L. Shi and S. Gunasekaran, Nanoscale Res. Lett., 3, 491 (2008); https://doi.org/10.1007/s11671-008-9185-6
- A.A. Kulkarni and P.S. Rao, Synthesis of Polymeric Nanomaterials for Biomedical Applications, In: Nanomaterials in Tissue Engineering, Woodhead Publishing, pp. 27-63 (2013); https://doi.org/10.1533/9780857097231.1.27
- G.A. Soares, A.D. Castro, B.S.F. Cury and R.C. Evangelista, Carbohydr. Polym., 91, 135 (2013); https://doi.org/10.1016/j.carbpol.2012.08.014
- F.K. Moreira, L.A. De Camargo, J.M. Marconcini and L.H. Mattoso, J. Agric. Food Chem., 61, 7110 (2013); https://doi.org/10.1021/jf402110g
- G.A. Kahrilas, L.M. Wally, S.J. Fredrick, M. Hiskey, A.L. Prieto and J.E. Owens, ACS Sustain. Chem. Eng., 2, 367 (2014); https://doi.org/10.1021/sc4003664
- E.P. da Silva, M.R. Guilherme, F.P. Garcia, C.V. Nakamura, L. CardozoFilho, C.G. Alonso, A.F. Rubira and M.H. Kunita, RSC Adv., 6, 19060 (2016); https://doi.org/10.1039/C5RA27865A
- M. Vedhanayagam, M. Nidhin, N. Duraipandy, G. Jaganathan, N.D. Naresh, M. Ranganathan, M.S. Kiran, S. Narayan, B.U. Nair and K.J. Sreeram, Int. J. Biol. Macromol., 99, 655 (2017); https://doi.org/10.1016 j.ijbiomac.2017.02.102
- A. Gupta, H.B. Eral, T.A. Hatton and P.S. Doyle, Soft Mater., 12, 2826 (2016); https://doi.org/10.1039/C5SM02958A
- A.V. Reis, M.R. Guilherme, A.T. Paulino, E.C. Muniz, L.H. Mattoso and E.B. Tambourgi, Langmuir, 25, 2473 (2009); https://doi.org/10.1021/la803313j
- N. Rangelova, L. Aleksandrov and S. Nenkova, J. Sol-Gel Sci. Technol., 85, 330 (2018); https://doi.org/10.1007/s10971-017-4556-z
- S. Pedroso-Santana and N. Fleitas-Salazar, Polym. Int., 69, 443 (2020); https://doi.org/10.1002/pi.5970
- H. Jonassen, A. Treves, A.L. Kjøniksen, G. Smistad and M. Hiorth, Biomacromolecules, 14, 3523 (2013); https://doi.org/10.1021/bm4008474
- P. Opanasopit, A. Apirakaramwong, T. Ngawhirunpat, T. Rojanarata and U. Ruktanonchai, AAPS PharmSciTech, 9, 67 (2008); https://doi.org/10.1208/s12249-007-9007-7
- A.V. Rane, K. Kanny, V.K. Abitha and S. Thomas, Eds.: S.M. Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal and S. Thomas, Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, In: Synthesis of Inorganic Nanomaterials, Woodhead Publishing, Chap. 5, pp. 121-139 (2018).
- O.G. Jones, E.A. Decker and D.J. McClements, Food Hydrocoll., 23, 1312 (2009); https://doi.org/10.1016/j.foodhyd.2008.11.013
- J. Dai, S. Wu, W. Jiang, P. Li, X. Chen, L. Liu, J. Liu, D. Sun, W. Chen, B. Chen and F. Li, J. Magn. Magn. Mater., 331, 62 (2013); https://doi.org/10.1016/j.jmmm.2012.11.004
- H. Xu, B.W. Zeiger and K.S. Suslick, Chem. Soc. Rev., 42, 2555 (2013); https://doi.org/10.1039/C2CS35282F
- V.K. Gupta, D. Pathania, S. Agarwal and P. Singh, J. Hazard. Mater., 243, 179 (2012); https://doi.org/10.1016/j.jhazmat.2012.10.018
- V.K. Gupta, D. Pathania, M. Asif and G. Sharma, J. Mol. Liq., 196, 107 (2014); https://doi.org/10.1016/j.molliq.2014.03.021
- T. Athar, Eds.: W. Ahmed and M.J. Jackson, Smart Precursors for Smart Nanoparticles, In: Emerging Nanotechnologies for Manufacturing, William Andrew Publishing, Chap. 17, pp. 444-538 (2015); https://doi.org/10.1016/B978-0-323-28990-0.00017-8
- C.G. Barreras-Urbina, B. Ramírez-Wong, G.A. López-Ahumada, S.E. Burruel-Ibarra, O. Martínez-Cruz, J.A. Tapia-Hernández and F. RodriguezFelix, Int. J. Food Prop., 19, 1912 (2016); https://doi.org/10.1080/10942912.2015.1089279
- L.Y. Meng, B. Wang, M.G. Ma and K.L. Lin, Mater. Tod. Chem., 1, 63 (2016); https://doi.org/10.1016/j.mtchem.2016.11.003
- X.J. Zhao and Z.Q. Zhou, Curr. Nanosci., 12, 103 (2016); https://doi.org/10.2174/1573413711666150818224020
- K. Lim and Z.A. Hamid, Polymer Nanoparticle Carriers in Drug Delivery Systems: Research Trend, In: Applications of Nanocomposite Materials in Drug Delivery, Woodhead Publishing, pp. 217-237 (2018); https://doi.org/10.1016/B978-0-12-813741-3.00010-8
- E.K. Noriega-Pelaez, N. Mendoza-Muñoz, A. Ganem-Quintanar and D. Quintanar-Guerrero, Drug Dev. Ind. Pharm., 37, 160 (2011); https://doi.org/10.3109/03639045.2010.501800
- S. Borker, M. Patole, A. Moghe and V. Pokharkar, Gold Bull., 50, 235 (2017); https://doi.org/10.1007/s13404-017-0213-0
- S.S. Chauhan, A.B. Shetty, E. Hatami, P. Chowdhury and M.M. Yallapu, Pharmaceutics, 12, 285 (2020); https://doi.org/10.3390/pharmaceutics12030285
- N.A. Hussien, N. Isiklan and M. Türk, Artif. Cells Nanomed. Biotechnol., 46(sup1), 264 (2018); https://doi.org/10.1080/21691401.2017.1421211
- R.M. Devendiran, S. Chinnaiyan, N.K. Yadav, G.K. Moorthy, G. Ramanathan, S. Singaravelu, U.T. Sivagnanam and P.T. Perumal, RSC Adv., 6, 29757 (2016); https://doi.org/10.1039/C6RA01698G
- G. Tian, Z. Guifang, Y. Qiumian, K. Jianyuan, O. Jinlai, X. Zhenxia, Z. Wen and L. Sha, J. Pharm. Biomed. Sci., 6, (2016).
- F.G. Prezotti, F.I. Boni, N.N. Ferreira, D.S. Silva, T. Vasconcelos, A. Almeida, B. Sarmento, M.P. Gremião and B.S. Cury, Drug Dev. Ind. Pharm., 46, 236 (2020); https://doi.org/10.1080/03639045.2020.1716374
- R. Sabra, N. Billa and C.J. Roberts, Int. J. Pharm., 572, 118775 (2019); https://doi.org/10.1016/j.ijpharm.2019.118775
- K. Devasvaran and V. Lim, Pharm. Biol., 59, 494 (2021); https://doi.org/10.1080/13880209.2021.1910716
- P.T.S. Kumar, C. Ramya, R. Jayakumar, S.V. Nair and V.-K. Lakshmanan, Colloids Surf. B Biointerfaces, 106, 109 (2013); https://doi.org/10.1016/j.colsurfb.2013.01.048
- A.T. Dhanya, K.R. Haridas, N. Divia and S. Sudheesh, Int. J. Drug Deliv., 4, 147 (2012).
- Y. Liu, K. Liu, X. Li, S. Xiao, D. Zheng, P. Zhu, C. Li, J. Liu, J. He, J. Lei and L. Wang, Mater. Sci. Eng. C, 86, 28 (2018); https://doi.org/10.1016/j.msec.2017.12.018
- J. Ouyang, M. Yang, T. Gong, J. Ou, Y. Tan, Z. Zhang and S. Li, PLoS One, 15, e0235090 (2020); https://doi.org/10.1371/journal.pone.0235090
- J. Ou, B. Hong, X. Ye, C. Feng, T. Gong and S. Li, J. Jinan Univ., 35, 330 (2014).
- V.B. Maciel, C.M. Yoshida, S.M. Pereira, F.M. Goycoolea and T.T. Franco, Molecules, 22, 1707 (2017); https://doi.org/10.3390/molecules22101707
- C.Y. Yu, Y.M. Wang, N.M. Li, G.S. Liu, S. Yang, G.T. Tang, D.X. He, X.W. Tan and H. Wei, Mol. Pharm., 11, 638 (2014); https://doi.org/10.1021/mp400412c
- B. Khodashenas, M. Ardjmand, M.S. Baei, A.S. Rad and A. Akbarzadeh, Appl. Organomet. Chem., 34, e5609 (2020); https://doi.org/10.1002/aoc.5609
- M. Ganguly and D. Pramanik, Int. J. Biol. Biomed., 11, 143 (2017).
- F. Oveissi, N. Tavakoli, M. Minaiyan, M.R. Mofid and A. Taheri, J. Biomater. Appl., 34, 1171 (2020); https://doi.org/10.1177/0885328219896704
- M.F. Bostanudin, M. Arafat, M. Sarfraz, D.C. Górecki and E. Barbu, Polymers, 11, 789 (2019); https://doi.org/10.3390/polym11050789
- V. Kumar, A. Kumari, P. Guleria and S.K. Yadav, Rev. Environ. Contam. Toxicol., 215, 39 (2012); https://doi.org/10.1007/978-1-4614-1463-6_2
- V. Kumar, P. Guleria, S. Ranjan, N. Dasgupta and E. Lichtfouse, Nanotoxicology and Nanoecotoxicology, In: Environmental Chemistry for a Sustainable, World Series volume 67 (2021).
- A.M. Schrand, M.F. Rahman, S.M. Hussain, J.J. Schlager, D.A. Smith and A.F. Syed, WIREs Nanomed. Nanobiotechnol., 2, 544 (2010); https://doi.org/10.1002/wnan.103
- Y. Teow, P.V. Asharani, M.P. Hande and S. Valiyaveettil, Chem. Commun., 47, 7025 (2011); https://doi.org/10.1039/c0cc05271j
- V. Kumar, S.K. Kansal and S.K. Mehta, Eds.: N. Islam, Toxicity of Nanomaterials: Present Scenario and Future Scope, In: Nanotechnology: Recent Trends, Emerging Issues and Future Directions, Nova Publications, Chap. 19, pp 461-486 (2014).
- B. Drasler, P. Sayre, K.G. Steinhäuser, A. Petri-Fink and B. RothenRutishauser, NanoImpact, 8, 99 (2017); https://doi.org/10.1016/j.impact.2017.08.002
- V. Kumar, N. Dasgupta and S. Ranjan, Nanotoxicology: Toxicity Evaluation, Risk Assessment and Management, CRC Press (2018).
- G.A. Martãu, M. Mihai and D.C. Vodnar, Polymers, 11, 1837 (2019); https://doi.org/10.3390/polym11111837
- A. Noreen, Z.-H. Nazli, J. Akram, I. Rasul, A. Mansha, N. Yaqoob, R. Iqbal, S. Tabasum, M. Zuber and K.M. Zia, Int. J. Biol. Macromol., 101, 254 (2017); https://doi.org/10.1016/j.ijbiomac.2017.03.029
- E.M. Jacob, A. Borah, A. Jindal, S.C. Pillai, Y. Yamamoto, T. Maekawa and D.N.S. Kumar, J. Mater. Res., 35, 1514 (2020); https://doi.org/10.1557/jmr.2020.108
- L. Jia, L. Guo, J. Zhu and Y. Ma, Mater. Sci. Eng. C, 43, 231 (2014); https://doi.org/10.1016/j.msec.2014.07.024
- P. Pallavicini, C.R. Arciola, F. Bertoglio, S. Curtosi, A. D’Agostino, G. Dacarro, F. Ferrari, D. Merli, C. Milanese, S. Rossi, A. Taglietti, M. Tenci and L. Visai, J. Colloid Interface Sci., 498, 271 (2017); https://doi.org/10.1016/j.jcis.2017.03.062
- S. Pistone, F.M. Goycoolea, A. Young, G. Smistad and M. Hiorth, Eur. J. Pharm. Sci., 96, 381 (2017); https://doi.org/10.1016/j.ejps.2016.10.012
- K.S.U. Suganya, K. Govindaraju, D. Sivaraman, R. Selvaraj, R. Manikandan and V. Ganesh Kumar, J. Cluster Sci., 28, 2933 (2017); https://doi.org/10.1007/s10876-017-1269-y
- A. Rampino, M. Borgogna, B. Bellich, P. Blasi, F. Virgilio and A. Cesàro, Eur. J. Pharm. Sci., 84, 37 (2016); https://doi.org/10.1016/j.ejps.2016.01.004
- H. Singh, Prev. Nutr. Food Sci., 21, 1 (2016); https://doi.org/10.3746/pnf.2016.21.1.1
- T. Krivorotova, A. Cirkovas, S. Maciulyte, R. Staneviciene, S. Budriene, E. Serviene and J. Sereikaite, Food Hydrocoll., 54, 49 (2016); https://doi.org/10.1016/j.foodhyd.2015.09.015
- P.T.S. Melo, F.A. Aouada and M.R. de Moura, Quim. Nova, 40, 247 (2017); https://doi.org/10.21577/0100-4042.20160188
- G. Gorrasi and V. Bugatti, LWT-Food Sci. Technol., 69, 139 (2016); https://doi.org/10.1016/j.lwt.2016.01.038
- X. He, H. Deng and H.M. Hwang, Yao Wu Shi Pin Fen Xi, 27, 1 (2019).
- J.B. Aswathanarayan and R.R. Vittal, Front Sustain Food Syst., 3, 95 (2019); https://doi.org/10.3389/fsufs.2019.00095
- E.S. Abdou, G.F. Galhoum and E.N. Mohamed, Food Hydrocoll., 83, 445 (2018); https://doi.org/10.1016/j.foodhyd.2018.05.026
- R.S. Sasaki, L.H. Mattoso and M.R. De Moura, J. Nanosci. Nanotechnol., 16, 6540 (2016); https://doi.org/10.1166/jnn.2016.11702
- P. Zimet and Y.D. Livney, Food Hydrocoll., 23, 1120 (2009); https://doi.org/10.1016/j.foodhyd.2008.10.008
- M. Sahoo, S. Vishwakarma, C. Panigrahi and J. Kumar, Food Front, 2, 3 (2021); https://doi.org/10.1002/fft2.58
- S. Shankar, N. Tanomrod, S. Rawdkuen and J.W. Rhim, Int. J. Biol. Macromol., 92, 842 (2016); https://doi.org/10.1016/j.ijbiomac.2016.07.107
- A. Al-Asmar, C.V. Giosafatto, M. Sabbah, A. Sanchez, R. Villalonga Santana and L. Mariniello, Nanomaterials, 10, 52 (2019); https://doi.org/10.3390/nano10010052
- Y. Hu, W. Zhang, Z. Ke, Y. Li and Z. Zhou, Int. J. Food Sci. Technol., 52, 2362 (2017); https://doi.org/10.1111/ijfs.13520
- M. Pascoli, P.J. Lopes-Oliveira, L.F. Fraceto, A.B. Seabra and H.C. Oliveira, Energy Ecol. Environ., 3, 137 (2018); https://doi.org/10.1007/s40974-018-0090-2
- M. Rashidipour, A. Maleki, S. Kordi, M. Birjandi, N. Pajouhi, R. Heydari, E. Mohammadi, R. Rezaee, B. Rasoulian and B. Davari, J. Agric. Food Chem., 67, 5736 (2019); https://doi.org/10.1021/acs.jafc.9b01106
- K. Sampathkumar, K.X. Tan and S.C. Loo, iScience, 23, 101055 (2020); https://doi.org/10.1016/j.isci.2020.101055
- S. Kala, N. Sogan, S.N. Naik, A. Agarwal and J. Kumar, Sci. Rep., 10, 14107 (2020); https://doi.org/10.1038/s41598-020-70889-z
- R. Sharma, J. Bajpai, A.K. Bajpai, S. Acharya, B. Kumar and R.K. Singh, Agric. Res., 6, 139 (2017); https://doi.org/10.1007/s40003-017-0257-7
- C. Fan, M. Guo, Y. Liang, H. Dong, G. Ding, W. Zhang, G. Tang, J. Yang, D. Kong and Y. Cao, Carbohydr. Polym., 172, 322 (2017); https://doi.org/10.1016/j.carbpol.2017.05.050
- J. Zhan, Y. Liang, D. Liu, X. Ma, P. Li, W. Zhai, Z. Zhou and P. Wang, Environ. Int., 130, 104861 (2019); https://doi.org/10.1016/j.envint.2019.05.055
- S. Kaushal, N. Kaur, M. Kaur and P.P. Singh, J. Photochem. Photobiol., 403, 112841 (2020); https://doi.org/10.1016/j.jphotochem.2020.112841
- P. Kulal and V. Badalamoole, Int. J. Biol. Macromol., 156, 1408 (2020); https://doi.org/10.1016/j.ijbiomac.2019.11.181
- S. Thakur, J. Chaudhary, V. Kumar and V.K. Thakur, J. Environ. Manage., 238, 210 (2019); https://doi.org/10.1016/j.jenvman.2019.03.002
- O.A. Attallah, M.A. Al-Ghobashy, M. Nebsen and M.Y. Salem, ACS Sustain. Chem. Eng., 5, 133 (2017); https://doi.org/10.1021/acssuschemeng.6b01003
- F.I. Abou El Fadl, G.A. Mahmoud and A.A. Mohamed, J. Inorg. Organomet. Polym. Mater., 29, 332 (2019); https://doi.org/10.1007/s10904-018-1003-8
- A.A. Kadam, J. Jang and D.S. Lee, Bioresour. Technol., 216, 391 (2016); https://doi.org/10.1016/j.biortech.2016.05.103
- M. Nasrollahzadeh, M. Sajjadi, S. Iravani and R.S. Varma, Carbohydr. Polym., 251, 116986 (2021); https://doi.org/10.1016/j.carbpol.2020.116986
- S. Pirsa, F. Asadzadeh and I. Karimi Sani, J. Inorg. Organomet. Polym., 30, 3188 (2020); https://doi.org/10.1007/s10904-020-01484-y
References
D. Mohnen, Curr. Opin. Plant Biol., 11, 266 (2008); https://doi.org/10.1016/j.pbi.2008.03.006
P. Sriamornsak, Expert Opin. Drug Deliv., 8, 1009 (2011); https://doi.org/10.1517/17425247.2011.584867
P. Sriamornsak, N. Thirawong and S. Puttipipatkhachorn, Eur. J. Pharm. Sci., 24, 363 (2005); https://doi.org/10.1016/j.ejps.2004.12.004
K. Burapapadh, H. Takeuchi and P. Sriamornsak, Asian J. Pharm. Sci., 11, 365 (2016); https://doi.org/10.1016/j.ajps.2015.07.003
I. Fraeye, T. Duvetter, E. Doungla, A. Van Loey and M. Hendrickx, Trends Food Sci. Technol., 21, 219 (2010); https://doi.org/10.1016/j.tifs.2010.02.001
C.G. Otoni, M.R. Moura, F.A. Aouada, G.P. Camilloto, R.S. Cruz, M.V. Lorevice, N.F.F. Soares and L.H.C. Mattoso, Food Hydrocoll., 41, 188 (2014); https://doi.org/10.1016/j.foodhyd.2014.04.013
O. Munjeri, P. Hodza, E.E. Osim and C.T. Musabayane, J. Pharm. Sci., 87, 905 (1998); https://doi.org/10.1021/js9801283
P.S.K. Murthy, Y. Murali Mohan, K. Varaprasad, B. Sreedhar and K. Mohana Raju, J. Colloid Interface Sci., 318, 217 (2008); https://doi.org/10.1016/j.jcis.2007.10.014
P. Reddy, S. Eswaramma, K.S. Krishna Rao and Y.I. Lee, Bull. Korean Chem. Soc., 35, 2391 (2014); https://doi.org/10.5012/bkcs.2014.35.8.2391
G.T. Grant, E.R. Morris, D.A. Rees, P.J. Smith and D. Thom, FEBS Lett., 32, 195 (1973); https://doi.org/10.1016/0014-5793(73)80770-7
C. Lv, Y. Wang, L.J. Wang, D. Li and B. Adhikari, Carbohydr. Polym., 95, 233 (2013); https://doi.org/10.1016/j.carbpol.2013.02.062
E.D. Ngouémazong, S. Christiaens, A. Shpigelman, A. Van Loey and M. Hendrickx, Compr. Rev. Food Sci. Food Saf., 14, 705 (2015); https://doi.org/10.1111/1541-4337.12160
G. Ávila, D. De Leonardis, G. Grilli, C. Lecchi and F. Ceciliani, Vet. Immunol. Immunopathol., 237, 110269 (2021); https://doi.org/10.1016/j.vetimm.2021.110269
N.A. Peppas, P. Bures, W.S. Leobandung and H. Ichikawa, Eur. J. Pharm. Biopharm., 50, 27 (2000); https://doi.org/10.1016/S0939-6411(00)00090-4
V.R. Sinha and R. Kumria, Int. J. Pharm., 224, 19 (2001); https://doi.org/10.1016/S0378-5173(01)00720-7
L. Liu, M.L. Fishman, J. Kost and K.B. Hicks, Biomaterials, 24, 3333 (2003); https://doi.org/10.1016/S0142-9612(03)00213-8
N.A. Nafee, F.A. Ismail, N.A. Boraie and L.M. Mortada, Drug Dev. Ind. Pharm., 30, 985 (2004); https://doi.org/10.1081/DDC-200037245
C. Valenta, Adv. Drug Deliv. Rev., 57, 1692 (2005); https://doi.org/10.1016/j.addr.2005.07.004
L. Liu, M.L. Fishman and K.B. Hicks, Cellul., 14, 15 (2006); https://doi.org/10.1007/s10570-006-9095-7
S. Chelladurai, M. Mishra and B. Mishra, Chem. Pharm. Bull. (Tokyo), 56, 1596 (2008); https://doi.org/10.1248/cpb.56.1596
N. Thirawong, J. Thongborisute, H. Takeuchi and P. Sriamornsak, J. Control. Rel., 125, 236 (2008); https://doi.org/10.1016/j.jconrel.2007.10.023
D.W. Heitman, W.E. Hardman and I.L. Cameron, Carcinogenesis, 13, 815 (1992); https://doi.org/10.1093/carcin/13.5.815
D. Platt and A. Raz, JNCI: J. National Can. Inst., 84, 438 (1992); https://doi.org/10.1093/jnci/84.6.438
K.J. Pienta, H. Nailk, A. Akhtar, K. Yamazaki, T.S. Replogle, J. Lehr, T.L. Donat, L. Tait, V. Hogan and A. Raz, JNCI: J. National Can. Inst., 87, 348 (1995); https://doi.org/10.1093/jnci/87.5.348
P. Nangia-Makker, V. Hogan, Y. Honjo, S. Baccarini, L. Tait, R. Bresalier and A. Raz, J. Natl. Cancer Inst., 94, 1854 (2002); https://doi.org/10.1093/jnci/94.24.1854
V.V. Glinsky and A. Raz, Carbohydr. Res., 344, 1788 (2009); https://doi.org/10.1016/j.carres.2008.08.038
W.C. Chang, R.S. Chapkin and J.R. Lupton, Carcinogenesis, 18, 721 (1997); https://doi.org/10.1093/carcin/18.4.721
C. Avivi-Green, S. PolakCharcon, Z. Madar and B. Schwartz, J. Cell. Biochem., 77, 18 (2000); https://doi.org/10.1002/(SICI)1097-4644(20000401)77:1<18::AIDJCB3>3.0.CO;2-1
C.A. Avivi-Green, Z.E. Madar and B.E. Schwartz, Int. J. Mol. Med., 6, 689 (2000); https://doi.org/10.3892/ijmm.6.6.689
G.E. Kossoy, H. Ben-Hur, A. Stark, I. Zusman and Z. Madar, Oncol. Rep., 8, 1387 (2001); https://doi.org/10.3892/or.8.6.1387
E. Olano-Martin, G.H. Rimbach, G.R. Gibson and R.A. Rastall, Anticancer Res., 23(1A), 341 (2003).
D. Chauhan, G. Li, K. Podar, T. Hideshima, P. Neri, D. He, N. Mitsiades, P. Richardson, Y. Chang, J. Schindler, B. Carver and K.C. Anderson, Cancer Res., 65, 8350 (2005); https://doi.org/10.1158/0008-5472.CAN-05-0163
C.L. Jackson, T.M. Dreaden, L.K. Theobald, N.M. Tran, T.L. Beal, M. Eid, M.Y. Gao, R.B. Shirley, M.T. Stoffel, M.V. Kumar and D. Mohnen, Glycobiol., 17, 805 (2007); https://doi.org/10.1093/glycob/cwm054
F.A. Munarin, M.C. Tanzi and P.A. Petrini, Int. J. Biol. Macromol., 51, 681 (2012); https://doi.org/10.1016/j.ijbiomac.2012.07.002
F. Naqash, F.A. Masoodi, S.A. Rather, S.M. Wani and A. Gani, Carbohydr. Polym., 168, 227 (2017); https://doi.org/10.1016/j.carbpol.2017.03.058
S.L. Kosaraju, Crit. Rev. Food Sci. Nutr., 45, 251 (2005); https://doi.org/10.1080/10408690490478091
L. Neufeld and H. Bianco-Peled, Int. J. Biol. Macromol., 101, 852 (2017); https://doi.org/10.1016/j.ijbiomac.2017.03.167
T.W. Wong, G. Colombo and F. Sonvico, AAPS PharmSciTech, 12, 201 (2011); https://doi.org/10.1208/s12249-010-9564-z
A. Zong, H. Cao and F. Wang, Carbohydr. Polym., 90, 1395 (2012); https://doi.org/10.1016/j.carbpol.2012.07.026
J.D. Kingsley, H. Dou, J. Morehead, B. Rabinow, H.E. Gendelman and C.J. Destache, J. Neuroimmune Pharmacol., 1, 340 (2006); https://doi.org/10.1007/s11481-006-9032-4
S.G. Fullana, H. Ternet, M. Freche, J.L. Lacout and F. Rodriguez, Acta Biomater., 6, 2294 (2010); https://doi.org/10.1016/j.actbio.2009.11.019
M. Saffran, G.S. Kumar, C. Savariar, J.C. Burnham, F. Williams and D.C. Neckers, Science, 233, 1081 (1986); https://doi.org/10.1126/science.3526553
M. Saffran, J.B. Field, J. Pena, R.H. Jones and Y. Okuda, J. Endocrinol., 131, 267 (1991); https://doi.org/10.1677/joe.0.1310267
L. Yang, J.S. Chu and J.A. Fix, Int. J. Pharm., 235, 1 (2002); https://doi.org/10.1016/S0378-5173(02)00004-2
S.K. Niture and L. Refai, Am. J. Pharmacol. Toxicol., 8, 9 (2013); https://doi.org/10.3844/ajptsp.2013.9.19
L. Delphi and H. Sepehri, Biomed. Pharmacother., 84, 637 (2016); https://doi.org/10.1016/j.biopha.2016.09.080
L. Leclere, M. Fransolet, F. Cote, P. Cambier, T. Arnould, P. Van Cutsem and C. Michiels, PLoS One, 10, e0115831 (2015); https://doi.org/10.1371/journal.pone.0115831
M.M. Joseph, S.R. Aravind, S.K. George, K. Raveendran Pillai, S. Mini and T.T. Sreelekha, Eur. J. Pharm. Biopharm., 93, 183 (2015); https://doi.org/10.1016/j.ejpb.2015.04.001
Y. Zhang, T. Sun and C. Jiang, Acta Pharm. Sin. B, 8, 34 (2018); https://doi.org/10.1016/j.apsb.2017.11.005
B.B. Mishra, B.B. Patel and S. Tiwari, Nanomedicine, 6, 9 (2010); https://doi.org/10.1016/j.nano.2009.04.008
Z. Izadi, A. Divsalar, A.A. Saboury and L. Sawyer, Chem. Biol. Drug Des., 88, 209 (2016); https://doi.org/10.1111/cbdd.12748
Y.S. Ovodov, Russ. J. Bioorgan. Chem., 35, 269 (2009); https://doi.org/10.1134/S1068162009030017
K. Burapapadh, H. Takeuchi and P. Sriamornsak, Eur. J. Pharm. Biopharm., 82, 250 (2012); https://doi.org/10.1016/j.ejpb.2012.07.010
C. Chittasupho, M. Jaturanpinyo and S. Mangmool, Drug Deliv., 20, 1 (2013); https://doi.org/10.3109/10717544.2012.739214
Y. Zhang, T. Chen, P. Yuan, R. Tian, W. Hu, Y. Tang, Y. Jia and L. Zhang, Carbohydr. Polym., 133, 31 (2015); https://doi.org/10.1016/j.carbpol.2015.06.102
A.K. Verma, A. Chanchal and A. Kumar, Potential of Negatively Charged Pectin Nanoparticles Encapsulating Paclitaxel: Preparation & Characterization. In2011 International Conference on Nanoscience, Technology and Societal Implications. IEEE, pp. 1-8 (2011).
F. Ji, J. Li, Z. Qin, B. Yang, E. Zhang, D. Dong, J. Wang, Y. Wen, L. Tian and F. Yao, Carbohydr. Polym., 177, 86 (2017); https://doi.org/10.1016/j.carbpol.2017.08.107
Y. Liu, Y. Zong, Z. Yang, M. Luo, G. Li, W. Yingsa, Y. Cao, M. Xiao, T. Kong, J. He, X. Liu and J. Lei, ACS Sustain. Chem. Eng., 7, 3614 (2019); https://doi.org/10.1021/acssuschemeng.8b06586
R.K. Dutta and S. Sahu, Results Pharma Sci., 2, 38 (2012); https://doi.org/10.1016/j.rinphs.2012.05.001
C.Y. Yu, H. Cao, X.C. Zhang, F.Z. Zhou, S.X. Cheng, X.Z. Zhang and R.X. Zhuo, Langmuir, 25, 11720 (2009); https://doi.org/10.1021/la901389v
R. Sharma, M. Ahuja and H. Kaur, Carbohydr. Polym., 87, 1606 (2012); https://doi.org/10.1016/j.carbpol.2011.09.065
P. Kumar, V. Kumar, R. Kumar and C.I. Pruncu, Nanomaterial, 10, 1452 (2020); https://doi.org/10.3390/nano10081452
S. Borker and V. Pokharkar, Artif. Cells Nanomed. Biotechnol., 46(sup2), 826 (2018); https://doi.org/10.1080/21691401.2018.1470525
M.B. Subudhi, A. Jain, A. Jain, P. Hurkat, S. Shilpi, A. Gulbake and S.K. Jain, Materials, 8, 832 (2015); https://doi.org/10.3390/ma8030832
K. Cheng and L.Y. Lim, Drug Dev. Ind. Pharm., 30, 359 (2004); https://doi.org/10.1081/DDC-120030930
S. Wen, J. Ou, R. Luo, W. Liang, P. OuYang and F. Zeng, J. Pharm. Biomed. Sci., 5, 385 (2015).
L. Shi and S. Gunasekaran, Nanoscale Res. Lett., 3, 491 (2008); https://doi.org/10.1007/s11671-008-9185-6
A.A. Kulkarni and P.S. Rao, Synthesis of Polymeric Nanomaterials for Biomedical Applications, In: Nanomaterials in Tissue Engineering, Woodhead Publishing, pp. 27-63 (2013); https://doi.org/10.1533/9780857097231.1.27
G.A. Soares, A.D. Castro, B.S.F. Cury and R.C. Evangelista, Carbohydr. Polym., 91, 135 (2013); https://doi.org/10.1016/j.carbpol.2012.08.014
F.K. Moreira, L.A. De Camargo, J.M. Marconcini and L.H. Mattoso, J. Agric. Food Chem., 61, 7110 (2013); https://doi.org/10.1021/jf402110g
G.A. Kahrilas, L.M. Wally, S.J. Fredrick, M. Hiskey, A.L. Prieto and J.E. Owens, ACS Sustain. Chem. Eng., 2, 367 (2014); https://doi.org/10.1021/sc4003664
E.P. da Silva, M.R. Guilherme, F.P. Garcia, C.V. Nakamura, L. CardozoFilho, C.G. Alonso, A.F. Rubira and M.H. Kunita, RSC Adv., 6, 19060 (2016); https://doi.org/10.1039/C5RA27865A
M. Vedhanayagam, M. Nidhin, N. Duraipandy, G. Jaganathan, N.D. Naresh, M. Ranganathan, M.S. Kiran, S. Narayan, B.U. Nair and K.J. Sreeram, Int. J. Biol. Macromol., 99, 655 (2017); https://doi.org/10.1016 j.ijbiomac.2017.02.102
A. Gupta, H.B. Eral, T.A. Hatton and P.S. Doyle, Soft Mater., 12, 2826 (2016); https://doi.org/10.1039/C5SM02958A
A.V. Reis, M.R. Guilherme, A.T. Paulino, E.C. Muniz, L.H. Mattoso and E.B. Tambourgi, Langmuir, 25, 2473 (2009); https://doi.org/10.1021/la803313j
N. Rangelova, L. Aleksandrov and S. Nenkova, J. Sol-Gel Sci. Technol., 85, 330 (2018); https://doi.org/10.1007/s10971-017-4556-z
S. Pedroso-Santana and N. Fleitas-Salazar, Polym. Int., 69, 443 (2020); https://doi.org/10.1002/pi.5970
H. Jonassen, A. Treves, A.L. Kjøniksen, G. Smistad and M. Hiorth, Biomacromolecules, 14, 3523 (2013); https://doi.org/10.1021/bm4008474
P. Opanasopit, A. Apirakaramwong, T. Ngawhirunpat, T. Rojanarata and U. Ruktanonchai, AAPS PharmSciTech, 9, 67 (2008); https://doi.org/10.1208/s12249-007-9007-7
A.V. Rane, K. Kanny, V.K. Abitha and S. Thomas, Eds.: S.M. Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal and S. Thomas, Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, In: Synthesis of Inorganic Nanomaterials, Woodhead Publishing, Chap. 5, pp. 121-139 (2018).
O.G. Jones, E.A. Decker and D.J. McClements, Food Hydrocoll., 23, 1312 (2009); https://doi.org/10.1016/j.foodhyd.2008.11.013
J. Dai, S. Wu, W. Jiang, P. Li, X. Chen, L. Liu, J. Liu, D. Sun, W. Chen, B. Chen and F. Li, J. Magn. Magn. Mater., 331, 62 (2013); https://doi.org/10.1016/j.jmmm.2012.11.004
H. Xu, B.W. Zeiger and K.S. Suslick, Chem. Soc. Rev., 42, 2555 (2013); https://doi.org/10.1039/C2CS35282F
V.K. Gupta, D. Pathania, S. Agarwal and P. Singh, J. Hazard. Mater., 243, 179 (2012); https://doi.org/10.1016/j.jhazmat.2012.10.018
V.K. Gupta, D. Pathania, M. Asif and G. Sharma, J. Mol. Liq., 196, 107 (2014); https://doi.org/10.1016/j.molliq.2014.03.021
T. Athar, Eds.: W. Ahmed and M.J. Jackson, Smart Precursors for Smart Nanoparticles, In: Emerging Nanotechnologies for Manufacturing, William Andrew Publishing, Chap. 17, pp. 444-538 (2015); https://doi.org/10.1016/B978-0-323-28990-0.00017-8
C.G. Barreras-Urbina, B. Ramírez-Wong, G.A. López-Ahumada, S.E. Burruel-Ibarra, O. Martínez-Cruz, J.A. Tapia-Hernández and F. RodriguezFelix, Int. J. Food Prop., 19, 1912 (2016); https://doi.org/10.1080/10942912.2015.1089279
L.Y. Meng, B. Wang, M.G. Ma and K.L. Lin, Mater. Tod. Chem., 1, 63 (2016); https://doi.org/10.1016/j.mtchem.2016.11.003
X.J. Zhao and Z.Q. Zhou, Curr. Nanosci., 12, 103 (2016); https://doi.org/10.2174/1573413711666150818224020
K. Lim and Z.A. Hamid, Polymer Nanoparticle Carriers in Drug Delivery Systems: Research Trend, In: Applications of Nanocomposite Materials in Drug Delivery, Woodhead Publishing, pp. 217-237 (2018); https://doi.org/10.1016/B978-0-12-813741-3.00010-8
E.K. Noriega-Pelaez, N. Mendoza-Muñoz, A. Ganem-Quintanar and D. Quintanar-Guerrero, Drug Dev. Ind. Pharm., 37, 160 (2011); https://doi.org/10.3109/03639045.2010.501800
S. Borker, M. Patole, A. Moghe and V. Pokharkar, Gold Bull., 50, 235 (2017); https://doi.org/10.1007/s13404-017-0213-0
S.S. Chauhan, A.B. Shetty, E. Hatami, P. Chowdhury and M.M. Yallapu, Pharmaceutics, 12, 285 (2020); https://doi.org/10.3390/pharmaceutics12030285
N.A. Hussien, N. Isiklan and M. Türk, Artif. Cells Nanomed. Biotechnol., 46(sup1), 264 (2018); https://doi.org/10.1080/21691401.2017.1421211
R.M. Devendiran, S. Chinnaiyan, N.K. Yadav, G.K. Moorthy, G. Ramanathan, S. Singaravelu, U.T. Sivagnanam and P.T. Perumal, RSC Adv., 6, 29757 (2016); https://doi.org/10.1039/C6RA01698G
G. Tian, Z. Guifang, Y. Qiumian, K. Jianyuan, O. Jinlai, X. Zhenxia, Z. Wen and L. Sha, J. Pharm. Biomed. Sci., 6, (2016).
F.G. Prezotti, F.I. Boni, N.N. Ferreira, D.S. Silva, T. Vasconcelos, A. Almeida, B. Sarmento, M.P. Gremião and B.S. Cury, Drug Dev. Ind. Pharm., 46, 236 (2020); https://doi.org/10.1080/03639045.2020.1716374
R. Sabra, N. Billa and C.J. Roberts, Int. J. Pharm., 572, 118775 (2019); https://doi.org/10.1016/j.ijpharm.2019.118775
K. Devasvaran and V. Lim, Pharm. Biol., 59, 494 (2021); https://doi.org/10.1080/13880209.2021.1910716
P.T.S. Kumar, C. Ramya, R. Jayakumar, S.V. Nair and V.-K. Lakshmanan, Colloids Surf. B Biointerfaces, 106, 109 (2013); https://doi.org/10.1016/j.colsurfb.2013.01.048
A.T. Dhanya, K.R. Haridas, N. Divia and S. Sudheesh, Int. J. Drug Deliv., 4, 147 (2012).
Y. Liu, K. Liu, X. Li, S. Xiao, D. Zheng, P. Zhu, C. Li, J. Liu, J. He, J. Lei and L. Wang, Mater. Sci. Eng. C, 86, 28 (2018); https://doi.org/10.1016/j.msec.2017.12.018
J. Ouyang, M. Yang, T. Gong, J. Ou, Y. Tan, Z. Zhang and S. Li, PLoS One, 15, e0235090 (2020); https://doi.org/10.1371/journal.pone.0235090
J. Ou, B. Hong, X. Ye, C. Feng, T. Gong and S. Li, J. Jinan Univ., 35, 330 (2014).
V.B. Maciel, C.M. Yoshida, S.M. Pereira, F.M. Goycoolea and T.T. Franco, Molecules, 22, 1707 (2017); https://doi.org/10.3390/molecules22101707
C.Y. Yu, Y.M. Wang, N.M. Li, G.S. Liu, S. Yang, G.T. Tang, D.X. He, X.W. Tan and H. Wei, Mol. Pharm., 11, 638 (2014); https://doi.org/10.1021/mp400412c
B. Khodashenas, M. Ardjmand, M.S. Baei, A.S. Rad and A. Akbarzadeh, Appl. Organomet. Chem., 34, e5609 (2020); https://doi.org/10.1002/aoc.5609
M. Ganguly and D. Pramanik, Int. J. Biol. Biomed., 11, 143 (2017).
F. Oveissi, N. Tavakoli, M. Minaiyan, M.R. Mofid and A. Taheri, J. Biomater. Appl., 34, 1171 (2020); https://doi.org/10.1177/0885328219896704
M.F. Bostanudin, M. Arafat, M. Sarfraz, D.C. Górecki and E. Barbu, Polymers, 11, 789 (2019); https://doi.org/10.3390/polym11050789
V. Kumar, A. Kumari, P. Guleria and S.K. Yadav, Rev. Environ. Contam. Toxicol., 215, 39 (2012); https://doi.org/10.1007/978-1-4614-1463-6_2
V. Kumar, P. Guleria, S. Ranjan, N. Dasgupta and E. Lichtfouse, Nanotoxicology and Nanoecotoxicology, In: Environmental Chemistry for a Sustainable, World Series volume 67 (2021).
A.M. Schrand, M.F. Rahman, S.M. Hussain, J.J. Schlager, D.A. Smith and A.F. Syed, WIREs Nanomed. Nanobiotechnol., 2, 544 (2010); https://doi.org/10.1002/wnan.103
Y. Teow, P.V. Asharani, M.P. Hande and S. Valiyaveettil, Chem. Commun., 47, 7025 (2011); https://doi.org/10.1039/c0cc05271j
V. Kumar, S.K. Kansal and S.K. Mehta, Eds.: N. Islam, Toxicity of Nanomaterials: Present Scenario and Future Scope, In: Nanotechnology: Recent Trends, Emerging Issues and Future Directions, Nova Publications, Chap. 19, pp 461-486 (2014).
B. Drasler, P. Sayre, K.G. Steinhäuser, A. Petri-Fink and B. RothenRutishauser, NanoImpact, 8, 99 (2017); https://doi.org/10.1016/j.impact.2017.08.002
V. Kumar, N. Dasgupta and S. Ranjan, Nanotoxicology: Toxicity Evaluation, Risk Assessment and Management, CRC Press (2018).
G.A. Martãu, M. Mihai and D.C. Vodnar, Polymers, 11, 1837 (2019); https://doi.org/10.3390/polym11111837
A. Noreen, Z.-H. Nazli, J. Akram, I. Rasul, A. Mansha, N. Yaqoob, R. Iqbal, S. Tabasum, M. Zuber and K.M. Zia, Int. J. Biol. Macromol., 101, 254 (2017); https://doi.org/10.1016/j.ijbiomac.2017.03.029
E.M. Jacob, A. Borah, A. Jindal, S.C. Pillai, Y. Yamamoto, T. Maekawa and D.N.S. Kumar, J. Mater. Res., 35, 1514 (2020); https://doi.org/10.1557/jmr.2020.108
L. Jia, L. Guo, J. Zhu and Y. Ma, Mater. Sci. Eng. C, 43, 231 (2014); https://doi.org/10.1016/j.msec.2014.07.024
P. Pallavicini, C.R. Arciola, F. Bertoglio, S. Curtosi, A. D’Agostino, G. Dacarro, F. Ferrari, D. Merli, C. Milanese, S. Rossi, A. Taglietti, M. Tenci and L. Visai, J. Colloid Interface Sci., 498, 271 (2017); https://doi.org/10.1016/j.jcis.2017.03.062
S. Pistone, F.M. Goycoolea, A. Young, G. Smistad and M. Hiorth, Eur. J. Pharm. Sci., 96, 381 (2017); https://doi.org/10.1016/j.ejps.2016.10.012
K.S.U. Suganya, K. Govindaraju, D. Sivaraman, R. Selvaraj, R. Manikandan and V. Ganesh Kumar, J. Cluster Sci., 28, 2933 (2017); https://doi.org/10.1007/s10876-017-1269-y
A. Rampino, M. Borgogna, B. Bellich, P. Blasi, F. Virgilio and A. Cesàro, Eur. J. Pharm. Sci., 84, 37 (2016); https://doi.org/10.1016/j.ejps.2016.01.004
H. Singh, Prev. Nutr. Food Sci., 21, 1 (2016); https://doi.org/10.3746/pnf.2016.21.1.1
T. Krivorotova, A. Cirkovas, S. Maciulyte, R. Staneviciene, S. Budriene, E. Serviene and J. Sereikaite, Food Hydrocoll., 54, 49 (2016); https://doi.org/10.1016/j.foodhyd.2015.09.015
P.T.S. Melo, F.A. Aouada and M.R. de Moura, Quim. Nova, 40, 247 (2017); https://doi.org/10.21577/0100-4042.20160188
G. Gorrasi and V. Bugatti, LWT-Food Sci. Technol., 69, 139 (2016); https://doi.org/10.1016/j.lwt.2016.01.038
X. He, H. Deng and H.M. Hwang, Yao Wu Shi Pin Fen Xi, 27, 1 (2019).
J.B. Aswathanarayan and R.R. Vittal, Front Sustain Food Syst., 3, 95 (2019); https://doi.org/10.3389/fsufs.2019.00095
E.S. Abdou, G.F. Galhoum and E.N. Mohamed, Food Hydrocoll., 83, 445 (2018); https://doi.org/10.1016/j.foodhyd.2018.05.026
R.S. Sasaki, L.H. Mattoso and M.R. De Moura, J. Nanosci. Nanotechnol., 16, 6540 (2016); https://doi.org/10.1166/jnn.2016.11702
P. Zimet and Y.D. Livney, Food Hydrocoll., 23, 1120 (2009); https://doi.org/10.1016/j.foodhyd.2008.10.008
M. Sahoo, S. Vishwakarma, C. Panigrahi and J. Kumar, Food Front, 2, 3 (2021); https://doi.org/10.1002/fft2.58
S. Shankar, N. Tanomrod, S. Rawdkuen and J.W. Rhim, Int. J. Biol. Macromol., 92, 842 (2016); https://doi.org/10.1016/j.ijbiomac.2016.07.107
A. Al-Asmar, C.V. Giosafatto, M. Sabbah, A. Sanchez, R. Villalonga Santana and L. Mariniello, Nanomaterials, 10, 52 (2019); https://doi.org/10.3390/nano10010052
Y. Hu, W. Zhang, Z. Ke, Y. Li and Z. Zhou, Int. J. Food Sci. Technol., 52, 2362 (2017); https://doi.org/10.1111/ijfs.13520
M. Pascoli, P.J. Lopes-Oliveira, L.F. Fraceto, A.B. Seabra and H.C. Oliveira, Energy Ecol. Environ., 3, 137 (2018); https://doi.org/10.1007/s40974-018-0090-2
M. Rashidipour, A. Maleki, S. Kordi, M. Birjandi, N. Pajouhi, R. Heydari, E. Mohammadi, R. Rezaee, B. Rasoulian and B. Davari, J. Agric. Food Chem., 67, 5736 (2019); https://doi.org/10.1021/acs.jafc.9b01106
K. Sampathkumar, K.X. Tan and S.C. Loo, iScience, 23, 101055 (2020); https://doi.org/10.1016/j.isci.2020.101055
S. Kala, N. Sogan, S.N. Naik, A. Agarwal and J. Kumar, Sci. Rep., 10, 14107 (2020); https://doi.org/10.1038/s41598-020-70889-z
R. Sharma, J. Bajpai, A.K. Bajpai, S. Acharya, B. Kumar and R.K. Singh, Agric. Res., 6, 139 (2017); https://doi.org/10.1007/s40003-017-0257-7
C. Fan, M. Guo, Y. Liang, H. Dong, G. Ding, W. Zhang, G. Tang, J. Yang, D. Kong and Y. Cao, Carbohydr. Polym., 172, 322 (2017); https://doi.org/10.1016/j.carbpol.2017.05.050
J. Zhan, Y. Liang, D. Liu, X. Ma, P. Li, W. Zhai, Z. Zhou and P. Wang, Environ. Int., 130, 104861 (2019); https://doi.org/10.1016/j.envint.2019.05.055
S. Kaushal, N. Kaur, M. Kaur and P.P. Singh, J. Photochem. Photobiol., 403, 112841 (2020); https://doi.org/10.1016/j.jphotochem.2020.112841
P. Kulal and V. Badalamoole, Int. J. Biol. Macromol., 156, 1408 (2020); https://doi.org/10.1016/j.ijbiomac.2019.11.181
S. Thakur, J. Chaudhary, V. Kumar and V.K. Thakur, J. Environ. Manage., 238, 210 (2019); https://doi.org/10.1016/j.jenvman.2019.03.002
O.A. Attallah, M.A. Al-Ghobashy, M. Nebsen and M.Y. Salem, ACS Sustain. Chem. Eng., 5, 133 (2017); https://doi.org/10.1021/acssuschemeng.6b01003
F.I. Abou El Fadl, G.A. Mahmoud and A.A. Mohamed, J. Inorg. Organomet. Polym. Mater., 29, 332 (2019); https://doi.org/10.1007/s10904-018-1003-8
A.A. Kadam, J. Jang and D.S. Lee, Bioresour. Technol., 216, 391 (2016); https://doi.org/10.1016/j.biortech.2016.05.103
M. Nasrollahzadeh, M. Sajjadi, S. Iravani and R.S. Varma, Carbohydr. Polym., 251, 116986 (2021); https://doi.org/10.1016/j.carbpol.2020.116986
S. Pirsa, F. Asadzadeh and I. Karimi Sani, J. Inorg. Organomet. Polym., 30, 3188 (2020); https://doi.org/10.1007/s10904-020-01484-y