Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antimicrobial Activity Studies of Chlorocobaloximes with Neutral Bases Containing Amine Functionality
Corresponding Author(s) : V. Vijaikanth
Asian Journal of Chemistry,
Vol. 33 No. 11 (2021): Vol 33 Issue 11, 2021
Abstract
The inorganic cobaloximes of type [Co(Cl)(dmgH)2B]; where dmgH = dimethyl glyoxime and B = neutral bases: glycine, ethyl amine, 2-aminopyridine, 4-aminopyridine, 2,6-diaminopyridine, aniline and 1-napthylamine have been synthesized. The synthesized cobaloximes were characterized by IR, UV-visible, 1H NMR and 13C NMR spectroscopic techniques. The cobaloxime complexes were screened for their antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii by the zone of inhibition test, biofilm eradication on biomaterial using catheter and modified Congo red agar method. It has been found that the cobaloxime complexes exhibit inhibition against both gram positive and gram negative bacteria and the cobaloximes showed better inhibition towards Gram-negative bacteria compared to Gram-positive bacteria.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.M.A. El-Hamid, R.S. El-Demerdash, H.F.H. Arafat and S.A. Sadeek, J. Mol. Struct., 1149, 613 (2017); https://doi.org/10.1016/j.molstruc.2017.08.031
- M.A. Gamil, S.A. Sadeek, W.A. Zordok and W.H. Elshwiniy, J. Mol. Struct., 1209, 127941 (2020); https://doi.org/10.1016/j.molstruc.2020.127941
- B.D. Gupta and S. Roy, Inorg. Chim. Acta, 146, 209 (1988); https://doi.org/10.1016/S0020-1693(00)80611-8
- N.B. Pahor, S.M. Forcolin, L.G. Marzilli, L. Randaccio, M.F. Summers and P.J. Toscano, Coord. Chem. Rev., 63, 1 (1985); https://doi.org/10.1016/0010-8545(85)80021-7
- D.G. Brown, Prog. Inorg. Chem., 18, 177 (1973).
- G.N. Schrauzer and E.J. Kohnle, Chem. Ber., 97, 3056 (1964); https://doi.org/10.1002/cber.19640971114
- K.E. Dalle, J. Warnan, J.J. Leung, B. Reuillard, I.S. Karmel and E. Reisner, Chem. Rev., 119, 2752 (2019); https://doi.org/10.1021/acs.chemrev.8b00392
- J.L. Dempsey, B.S. Brunschwig, J.R. Winkler and H.B. Gray, Acc. Chem. Res., 42, 1995 (2009); https://doi.org/10.1021/ar900253e
- M. Wang, K. Han, S. Zhang and L. Sun, Coord. Chem. Rev., 287, 1 (2015); https://doi.org/10.1016/j.ccr.2014.12.005
- B. Reuillard, J. Warnan, J.J. Leung, D.W. Wakerley and E. Reisner, Angew. Chem. Int. Ed., 55, 3952 (2016); https://doi.org/10.1002/anie.201511378
- M. Bacchi, G. Berggren, J. Niklas, E. Veinberg, M.W. Mara, M.L. Shelby, O.G. Poluektov, L.X. Chen, D.M. Tiede, C. Cavazza, M.J. Field, M. Fontecave and V. Artero, Inorg. Chem., 53, 8071 (2014); https://doi.org/10.1021/ic501014c
- F. Wen, J. Yang, X. Zong, B. Ma, D. Wang and C. Li, J. Catal., 281, 318 (2011); https://doi.org/10.1016/j.jcat.2011.05.015
- A. Fihri, V. Artero, M. Razavet, C. Baffert, W. Leibl and M. Fontecave, Angew. Chem. Int. Ed., 120, 574 (2008); https://doi.org/10.1002/ange.200702953
- J. Demarteau, A. Debuigne and C. Detrembleur, Chem. Rev., 119, 6906 (2019); https://doi.org/10.1021/acs.chemrev.8b00715
- A.J.L. Beckwithm, Eds.: V.B. Giese, Radicals in Organic Synthesis: Formation of Carbin-Carbon Bonds, Pergamon Press: Oxford, pp. 294 (1986).
- R. Scheffold, G. Rytez and L. Walder, Eds.: R. Scheffold, Transition Metals in Organic Synthesis, Wiley, New York, vol. 3, p. 355 (1983).
- A.K. Ghosh and Y. Chen, Tetrahedron Lett., 36, 505 (1995); https://doi.org/10.1016/0040-4039(94)02296-N
- M. Wright and M.E. Welker, J. Org. Chem., 61, 133 (1996); https://doi.org/10.1021/jo951505o
- B.D. Gupta, V. Singh, K. Qanungo, V. Vijaikanth and R.S. Sengar, J. Organomet. Chem., 582, 279 (1999); https://doi.org/10.1016/S0022-328X(99)00067-4
- B.D. Gupta, V. Dixit and J. Das, J. Organomet. Chem., 572, 49 (1999); https://doi.org/10.1016/S0022-328X(98)00689-5
- T. Brown, A. Dronsfield, A. Jablonski and A.-S. Wilkinson, Tetrahedron Lett., 37, 5413 (1996); https://doi.org/10.1016/0040-4039(96)01059-3
- G.B. Gill, G. Pattenden and G.A. Roan, Tetrahedron Lett., 37, 9369 (1997); https://doi.org/10.1016/S0040-4039(97)82966-8
- L. Gage and B.P. Branchaud, Tetrahedron Lett., 38, 7007 (1997); https://doi.org/10.1016/S0040-4039(97)01638-9
- A. Kilic, M. Ulusoy, M. Durgun, E. Aytar, A. Keles, M. Dagdevren and I. Yilmaz, Coord. Chem., 67, 2661 (2014); https://doi.org/10.1080/00958972.2014.948431
- M.F. Summers, L.G. Marzilli, N. Bresciani-Pahor and L. Randaccio, J. Am. Chem. Soc., 106, 4478 (1984); https://doi.org/10.1021/ja00328a030
- P. Toscano, T.F. Swider, L.G. Marzilli, N. Bresciani-Pahor and L. Randaccio, Inorg. Chem., 22, 3416 (1983); https://doi.org/10.1021/ic00165a010
- S. Pizarro, M. Araya and A. Delgadillo, Polyhedron, 141, 94 (2018); https://doi.org/10.1016/j.poly.2017.11.005
- P. Liebing, F. Oehler, M. Wagner, P.F. Tripet and A. Togni, Organometallics, 37, 570 (2018); https://doi.org/10.1021/acs.organomet.7b00892
- M. Erdem-Tuncmen and F. Karipcin, J. Incl. Phenom. Macrocycl. Chem., 77, 95 (2013); https://doi.org/10.1007/s10847-012-0220-y
- S. Sowmya, L. Sridhar and V. Vijaikanth, Mater. Today Proc., 47, 784 (2021); https://doi.org/10.1016/j.matpr.2020.07.589
- S. Mirra, M. Strianese, C. Pellecchia, V. Bertolasi, G. Monaco and S. Milione, Inorg. Chim. Acta, 444, 202 (2016); https://doi.org/10.1016/j.ica.2016.01.040
- J.A. Lemire, J.J. Harrison and R.J. Turner, Nat. Rev. Microbiol., 11, 371 (2013); https://doi.org/10.1038/nrmicro3028
- A.F. Santos, D.F. Brotto, L.R.V. Favarin, N.A. Cabeza, G.R. Andrade, M. Batistote, A.A. Cavalheiro, A. Neves,D.C.M. Rodrigues and A. dos Anjos, Rev. Bras. Farmacogn., 24, 309 (2014); https://doi.org/10.1016/j.bjp.2014.07.008
- E.L. Chang, C. Simmers and D.A. Knight, Pharmaceuticals, 3, 1711 (2010); https://doi.org/10.3390/ph3061711
- M. Rownicki, Z. Dabrowska, M. Wojciechowska, A.J. Wierzba, K. Maximova, D. Gryko and J. Trylska, ACS Omega, 4, 819 (2019); https://doi.org/10.1021/acsomega.8b03139
- F.D. Lowy, N. Engl. J. Med., 339, 520 (1998); https://doi.org/10.1056/NEJM199808203390806
- Y. Zheng, W. Liu, Y. Chen, H. Jiang, H. Yan, I. Kosenko, L. Chekulaeva, I. Sivaev, V. Bregadze and X. Wang, Organometallics, 36, 3484 (2017); https://doi.org/10.1021/acs.organomet.7b00426
- B.S. Cooper, G.F. Medley, S.P. Stone, C.C. Kibbler, B.D. Cookson, J.A. Roberts, G. Duckworth, R. Lai and S. Ebrahim, Proc. Natl. Acad. Sci. USA, 101, 10223 (2004); https://doi.org/10.1073/pnas.0401324101
- S.B. Almasaudi, Saudi J. Biol. Sci., 25, 586 (2018); https://doi.org/10.1016/j.sjbs.2016.02.009
- E. Babapour, A. Haddadi, R. Mirnejad, N. Amirmozafari and S.-A. Angaji, Asian Pac. J. Trop. Biomed., 6, 528 (2016); https://doi.org/10.1016/j.apjtb.2016.04.006
- E. Canpolat, M. Kaya and S. Gur, Turk. J. Chem., 28, 235 (2004).
- A. Dayalan and S. Martin, Indian J. Sci. Technol., 2, 59 (2009).
- M.A. Selvi, P. Jothi, A. Dayalan, V. Duraipandian and S. Ignacimuthu, J. Chem. Pharm. Res., 3, 382 (2011).
- U. Romling and C. Balsalobre, J. Intern. Med., 272, 541 (2012); https://doi.org/10.1111/joim.12004
- A.D.M. Mohamad, M.J.A. Abualreish and A.M. Abu-Dief, J. Mol. Liq., 290, 111162 (2019); https://doi.org/10.1016/j.molliq.2019.111162
- E. Vaòková, K. Lokocová, O. Matátková, I. Krí•ová, J. Masák, B. Grüner, P. Kaule, J. Cermák and V. Šícha, J. Organomet. Chem., 899, 120891 (2019); https://doi.org/10.1016/j.jorganchem.2019.120891
- N. Yamazaki, Bull. Chem. Soc. Jpn., 44, 582 (1971); https://doi.org/10.1246/bcsj.44.582
- A. Kilic, M.V. Kilic, M. Ulusoy, M. Durgun, E. Aytar, M. Dagdevren and I. Yilmaz, J. Organomet. Chem., 767, 150 (2014); https://doi.org/10.1016/j.jorganchem.2014.05.023
References
S.M.A. El-Hamid, R.S. El-Demerdash, H.F.H. Arafat and S.A. Sadeek, J. Mol. Struct., 1149, 613 (2017); https://doi.org/10.1016/j.molstruc.2017.08.031
M.A. Gamil, S.A. Sadeek, W.A. Zordok and W.H. Elshwiniy, J. Mol. Struct., 1209, 127941 (2020); https://doi.org/10.1016/j.molstruc.2020.127941
B.D. Gupta and S. Roy, Inorg. Chim. Acta, 146, 209 (1988); https://doi.org/10.1016/S0020-1693(00)80611-8
N.B. Pahor, S.M. Forcolin, L.G. Marzilli, L. Randaccio, M.F. Summers and P.J. Toscano, Coord. Chem. Rev., 63, 1 (1985); https://doi.org/10.1016/0010-8545(85)80021-7
D.G. Brown, Prog. Inorg. Chem., 18, 177 (1973).
G.N. Schrauzer and E.J. Kohnle, Chem. Ber., 97, 3056 (1964); https://doi.org/10.1002/cber.19640971114
K.E. Dalle, J. Warnan, J.J. Leung, B. Reuillard, I.S. Karmel and E. Reisner, Chem. Rev., 119, 2752 (2019); https://doi.org/10.1021/acs.chemrev.8b00392
J.L. Dempsey, B.S. Brunschwig, J.R. Winkler and H.B. Gray, Acc. Chem. Res., 42, 1995 (2009); https://doi.org/10.1021/ar900253e
M. Wang, K. Han, S. Zhang and L. Sun, Coord. Chem. Rev., 287, 1 (2015); https://doi.org/10.1016/j.ccr.2014.12.005
B. Reuillard, J. Warnan, J.J. Leung, D.W. Wakerley and E. Reisner, Angew. Chem. Int. Ed., 55, 3952 (2016); https://doi.org/10.1002/anie.201511378
M. Bacchi, G. Berggren, J. Niklas, E. Veinberg, M.W. Mara, M.L. Shelby, O.G. Poluektov, L.X. Chen, D.M. Tiede, C. Cavazza, M.J. Field, M. Fontecave and V. Artero, Inorg. Chem., 53, 8071 (2014); https://doi.org/10.1021/ic501014c
F. Wen, J. Yang, X. Zong, B. Ma, D. Wang and C. Li, J. Catal., 281, 318 (2011); https://doi.org/10.1016/j.jcat.2011.05.015
A. Fihri, V. Artero, M. Razavet, C. Baffert, W. Leibl and M. Fontecave, Angew. Chem. Int. Ed., 120, 574 (2008); https://doi.org/10.1002/ange.200702953
J. Demarteau, A. Debuigne and C. Detrembleur, Chem. Rev., 119, 6906 (2019); https://doi.org/10.1021/acs.chemrev.8b00715
A.J.L. Beckwithm, Eds.: V.B. Giese, Radicals in Organic Synthesis: Formation of Carbin-Carbon Bonds, Pergamon Press: Oxford, pp. 294 (1986).
R. Scheffold, G. Rytez and L. Walder, Eds.: R. Scheffold, Transition Metals in Organic Synthesis, Wiley, New York, vol. 3, p. 355 (1983).
A.K. Ghosh and Y. Chen, Tetrahedron Lett., 36, 505 (1995); https://doi.org/10.1016/0040-4039(94)02296-N
M. Wright and M.E. Welker, J. Org. Chem., 61, 133 (1996); https://doi.org/10.1021/jo951505o
B.D. Gupta, V. Singh, K. Qanungo, V. Vijaikanth and R.S. Sengar, J. Organomet. Chem., 582, 279 (1999); https://doi.org/10.1016/S0022-328X(99)00067-4
B.D. Gupta, V. Dixit and J. Das, J. Organomet. Chem., 572, 49 (1999); https://doi.org/10.1016/S0022-328X(98)00689-5
T. Brown, A. Dronsfield, A. Jablonski and A.-S. Wilkinson, Tetrahedron Lett., 37, 5413 (1996); https://doi.org/10.1016/0040-4039(96)01059-3
G.B. Gill, G. Pattenden and G.A. Roan, Tetrahedron Lett., 37, 9369 (1997); https://doi.org/10.1016/S0040-4039(97)82966-8
L. Gage and B.P. Branchaud, Tetrahedron Lett., 38, 7007 (1997); https://doi.org/10.1016/S0040-4039(97)01638-9
A. Kilic, M. Ulusoy, M. Durgun, E. Aytar, A. Keles, M. Dagdevren and I. Yilmaz, Coord. Chem., 67, 2661 (2014); https://doi.org/10.1080/00958972.2014.948431
M.F. Summers, L.G. Marzilli, N. Bresciani-Pahor and L. Randaccio, J. Am. Chem. Soc., 106, 4478 (1984); https://doi.org/10.1021/ja00328a030
P. Toscano, T.F. Swider, L.G. Marzilli, N. Bresciani-Pahor and L. Randaccio, Inorg. Chem., 22, 3416 (1983); https://doi.org/10.1021/ic00165a010
S. Pizarro, M. Araya and A. Delgadillo, Polyhedron, 141, 94 (2018); https://doi.org/10.1016/j.poly.2017.11.005
P. Liebing, F. Oehler, M. Wagner, P.F. Tripet and A. Togni, Organometallics, 37, 570 (2018); https://doi.org/10.1021/acs.organomet.7b00892
M. Erdem-Tuncmen and F. Karipcin, J. Incl. Phenom. Macrocycl. Chem., 77, 95 (2013); https://doi.org/10.1007/s10847-012-0220-y
S. Sowmya, L. Sridhar and V. Vijaikanth, Mater. Today Proc., 47, 784 (2021); https://doi.org/10.1016/j.matpr.2020.07.589
S. Mirra, M. Strianese, C. Pellecchia, V. Bertolasi, G. Monaco and S. Milione, Inorg. Chim. Acta, 444, 202 (2016); https://doi.org/10.1016/j.ica.2016.01.040
J.A. Lemire, J.J. Harrison and R.J. Turner, Nat. Rev. Microbiol., 11, 371 (2013); https://doi.org/10.1038/nrmicro3028
A.F. Santos, D.F. Brotto, L.R.V. Favarin, N.A. Cabeza, G.R. Andrade, M. Batistote, A.A. Cavalheiro, A. Neves,D.C.M. Rodrigues and A. dos Anjos, Rev. Bras. Farmacogn., 24, 309 (2014); https://doi.org/10.1016/j.bjp.2014.07.008
E.L. Chang, C. Simmers and D.A. Knight, Pharmaceuticals, 3, 1711 (2010); https://doi.org/10.3390/ph3061711
M. Rownicki, Z. Dabrowska, M. Wojciechowska, A.J. Wierzba, K. Maximova, D. Gryko and J. Trylska, ACS Omega, 4, 819 (2019); https://doi.org/10.1021/acsomega.8b03139
F.D. Lowy, N. Engl. J. Med., 339, 520 (1998); https://doi.org/10.1056/NEJM199808203390806
Y. Zheng, W. Liu, Y. Chen, H. Jiang, H. Yan, I. Kosenko, L. Chekulaeva, I. Sivaev, V. Bregadze and X. Wang, Organometallics, 36, 3484 (2017); https://doi.org/10.1021/acs.organomet.7b00426
B.S. Cooper, G.F. Medley, S.P. Stone, C.C. Kibbler, B.D. Cookson, J.A. Roberts, G. Duckworth, R. Lai and S. Ebrahim, Proc. Natl. Acad. Sci. USA, 101, 10223 (2004); https://doi.org/10.1073/pnas.0401324101
S.B. Almasaudi, Saudi J. Biol. Sci., 25, 586 (2018); https://doi.org/10.1016/j.sjbs.2016.02.009
E. Babapour, A. Haddadi, R. Mirnejad, N. Amirmozafari and S.-A. Angaji, Asian Pac. J. Trop. Biomed., 6, 528 (2016); https://doi.org/10.1016/j.apjtb.2016.04.006
E. Canpolat, M. Kaya and S. Gur, Turk. J. Chem., 28, 235 (2004).
A. Dayalan and S. Martin, Indian J. Sci. Technol., 2, 59 (2009).
M.A. Selvi, P. Jothi, A. Dayalan, V. Duraipandian and S. Ignacimuthu, J. Chem. Pharm. Res., 3, 382 (2011).
U. Romling and C. Balsalobre, J. Intern. Med., 272, 541 (2012); https://doi.org/10.1111/joim.12004
A.D.M. Mohamad, M.J.A. Abualreish and A.M. Abu-Dief, J. Mol. Liq., 290, 111162 (2019); https://doi.org/10.1016/j.molliq.2019.111162
E. Vaòková, K. Lokocová, O. Matátková, I. Krí•ová, J. Masák, B. Grüner, P. Kaule, J. Cermák and V. Šícha, J. Organomet. Chem., 899, 120891 (2019); https://doi.org/10.1016/j.jorganchem.2019.120891
N. Yamazaki, Bull. Chem. Soc. Jpn., 44, 582 (1971); https://doi.org/10.1246/bcsj.44.582
A. Kilic, M.V. Kilic, M. Ulusoy, M. Durgun, E. Aytar, M. Dagdevren and I. Yilmaz, J. Organomet. Chem., 767, 150 (2014); https://doi.org/10.1016/j.jorganchem.2014.05.023