Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave-Assisted Synthesis, Molecular Docking Studies and Biological Evaluation of Benzothiazole Containing Novel Indole Derivatives
Corresponding Author(s) : Shaheen Sultana
Asian Journal of Chemistry,
Vol. 33 No. 11 (2021): Vol 33 Issue 11, 2021
Abstract
The synthesis of novel indole derivatives 4a-o using a microwave assisted method via Schiff’s base and Mannich base reaction mechanism was described. Compounds 3a-c were synthesized via reaction of 2-amino benzothiazole with substituted isatin by Schiff base reaction mechanism. Also, indole derivatives 4a-o were synthesized via reaction of compounds 3a-c with substituted benzaldehydes by Mannich base reaction. The biological potentials of the newly synthesized indole derivatives were evaluated for their anthelmintic activity and in vitro anticancer activity by MTT assay. The anticancer activity results suggested that indole derivatives 4c-o have activity against MCF-7 and SKOV3 cells in comparison with doxorubicin as standard drug. Furthermore, the molecular docking studies of these novel derivatives of indole showed good agreement with the biological results when their binding pattern and affinity towards the active site of EGFR was also investigated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Kumar and Ritika, Futur. J. Pharm. Sci., 6, 121 (2020); https://doi.org/10.1186/s43094-020-00141-y
- D. Kumar, S. Sharma, S. Kalra, G. Singh, V. Monga and B. Kumar, Curr. Drug Targets, 21, 864 (2020); https://doi.org/10.2174/1389450121666200310115327
- A. Kumari and R.K. Singh, Bioorg. Chem., 89, 103021 (2019); https://doi.org/10.1016/j.bioorg.2019.103021
- P.K. Sharma, T. Qadir, A. Amin and D. Sarkar, The Open Med. Chem. J., 15 (2021).
- A. Gursoy and N. Karal, Eur. J. Med. Chem., 38, 633 (2003); https://doi.org/10.1016/S0223-5234(03)00085-0
- S.K. Sridhar and A. Ramesh, Biol. Pharm. Bull., 24, 1149 (2001); https://doi.org/10.1248/bpb.24.1149
- L. Endresen, Acta Pharm., 54, 49 (2009); https://doi.org/10.1111/j.1600-0773.1984.tb01894.x
- S.K. Bhattacharya, Biog. Amines, 14, 131 (1988).
- N. Sharma, U.K. Sharma and E.V. Van der Eycken, Eds.: W. Zhang and B.W. Cue, Microwave-Assisted Organic Synthesis: Overview of Recent Applications, In: Green Techniques for Organic Synthesis and Medicinal Chemistry, Wiley, Ed.: 2, Chap. 17, pp. 441-463 (2018).
- B.N. Shivabasappa and S.B. Jayaprakash, Int. J. Pharm. Pharm. Sci., 9, 128 (2017).
- V. Mehta, A. Sharma, P. Kailkhura and U. Malairaman, Asian J. Pharm. Clin. Res., 9, 2 (2016); https://doi.org/10.22159/ajpcr.2016.v9s3.14543
- V. Glover, J.M. Halket, P.J. Watkins, A. Clow, B.L. Goodwin and M. Sandier, J. Neurochem., 51, 656 (1988); https://doi.org/10.1111/j.1471-4159.1988.tb01089.x
- H. Kumar, S.A. Javed, S.A. Khan and M. Amir, Eur. J. Med. Chem., 43, 2688 (2008); https://doi.org/10.1016/j.ejmech.2008.01.039
- M. Akhter, A. Husain, B. Azad and M. Ajmal, Eur. J. Med. Chem., 44, 2372 (2009); https://doi.org/10.1016/j.ejmech.2008.09.005
- G.A. Idrees, O.M. Aly, G. El-Din A.A. Abuo-Rahma and M.F. Radwan, Eur. J. Med. Chem., 44, 3973 (2009); https://doi.org/10.1016/j.ejmech.2009.04.026
- D.J. Bauer and P.W. Sadler, 1-Substituted Isatin-thiosemicarbazones, their Preparation and Pharmaceutical Preparations containing them. British Patent 975357 (1964)
- D. Kumar, S. Sundaree, E.O. Johnson and K. Shah, Bioorg. Med. Chem. Lett., 19, 4492 (2009); https://doi.org/10.1016/j.bmcl.2009.03.172
- S. Muthusamy, S.A. Babu and M. Nethaji, Tetrahedron, 59, 8117 (2003); https://doi.org/10.1016/j.tet.2003.08.041
- M.M. Blanco, M.D. Maso, M.S. Shmidt and I.A. Perillo, Synthesis, 829 (2017); https://doi.org/10.1055/s-2007-965949
- R. Shakir, A. Ariffin and M. Abdulla, Molecules, 19, 3436 (2014); https://doi.org/10.3390/molecules19033436
- R.J. Ruch, S. Cheng and J.E. Klaunig, Carcinogenesis, 10, 1003 (1989); https://doi.org/10.1093/carcin/10.6.1003
- N.S. Pagadala, K. Syed and J. Tuszynski, Biophys. Rev., 9, 91 (2017); https://doi.org/10.1007/s12551-016-0247-1
- K. Solankee, K. Kapadia, K. Upadhyay and J. Patel, Orient. J. Chem., 17, 302 (2001).
- A. Venkanna, B. Siva, B. Poornima, P.R. Rao Vadaparthi, K.R. Prasad, K.A. Reddy, G.B.P. Reddy and K.S. Babu, Fitoterapia, 95, 102 (2014); https://doi.org/10.1016/j.fitote.2014.03.003
- X.Y. Meng, H.X. Zhang, M. Mezei and M. Cui, Curr. Comput. Aided Drug Des., 7, 146 (2011); https://doi.org/10.2174/157340911795677602
References
S. Kumar and Ritika, Futur. J. Pharm. Sci., 6, 121 (2020); https://doi.org/10.1186/s43094-020-00141-y
D. Kumar, S. Sharma, S. Kalra, G. Singh, V. Monga and B. Kumar, Curr. Drug Targets, 21, 864 (2020); https://doi.org/10.2174/1389450121666200310115327
A. Kumari and R.K. Singh, Bioorg. Chem., 89, 103021 (2019); https://doi.org/10.1016/j.bioorg.2019.103021
P.K. Sharma, T. Qadir, A. Amin and D. Sarkar, The Open Med. Chem. J., 15 (2021).
A. Gursoy and N. Karal, Eur. J. Med. Chem., 38, 633 (2003); https://doi.org/10.1016/S0223-5234(03)00085-0
S.K. Sridhar and A. Ramesh, Biol. Pharm. Bull., 24, 1149 (2001); https://doi.org/10.1248/bpb.24.1149
L. Endresen, Acta Pharm., 54, 49 (2009); https://doi.org/10.1111/j.1600-0773.1984.tb01894.x
S.K. Bhattacharya, Biog. Amines, 14, 131 (1988).
N. Sharma, U.K. Sharma and E.V. Van der Eycken, Eds.: W. Zhang and B.W. Cue, Microwave-Assisted Organic Synthesis: Overview of Recent Applications, In: Green Techniques for Organic Synthesis and Medicinal Chemistry, Wiley, Ed.: 2, Chap. 17, pp. 441-463 (2018).
B.N. Shivabasappa and S.B. Jayaprakash, Int. J. Pharm. Pharm. Sci., 9, 128 (2017).
V. Mehta, A. Sharma, P. Kailkhura and U. Malairaman, Asian J. Pharm. Clin. Res., 9, 2 (2016); https://doi.org/10.22159/ajpcr.2016.v9s3.14543
V. Glover, J.M. Halket, P.J. Watkins, A. Clow, B.L. Goodwin and M. Sandier, J. Neurochem., 51, 656 (1988); https://doi.org/10.1111/j.1471-4159.1988.tb01089.x
H. Kumar, S.A. Javed, S.A. Khan and M. Amir, Eur. J. Med. Chem., 43, 2688 (2008); https://doi.org/10.1016/j.ejmech.2008.01.039
M. Akhter, A. Husain, B. Azad and M. Ajmal, Eur. J. Med. Chem., 44, 2372 (2009); https://doi.org/10.1016/j.ejmech.2008.09.005
G.A. Idrees, O.M. Aly, G. El-Din A.A. Abuo-Rahma and M.F. Radwan, Eur. J. Med. Chem., 44, 3973 (2009); https://doi.org/10.1016/j.ejmech.2009.04.026
D.J. Bauer and P.W. Sadler, 1-Substituted Isatin-thiosemicarbazones, their Preparation and Pharmaceutical Preparations containing them. British Patent 975357 (1964)
D. Kumar, S. Sundaree, E.O. Johnson and K. Shah, Bioorg. Med. Chem. Lett., 19, 4492 (2009); https://doi.org/10.1016/j.bmcl.2009.03.172
S. Muthusamy, S.A. Babu and M. Nethaji, Tetrahedron, 59, 8117 (2003); https://doi.org/10.1016/j.tet.2003.08.041
M.M. Blanco, M.D. Maso, M.S. Shmidt and I.A. Perillo, Synthesis, 829 (2017); https://doi.org/10.1055/s-2007-965949
R. Shakir, A. Ariffin and M. Abdulla, Molecules, 19, 3436 (2014); https://doi.org/10.3390/molecules19033436
R.J. Ruch, S. Cheng and J.E. Klaunig, Carcinogenesis, 10, 1003 (1989); https://doi.org/10.1093/carcin/10.6.1003
N.S. Pagadala, K. Syed and J. Tuszynski, Biophys. Rev., 9, 91 (2017); https://doi.org/10.1007/s12551-016-0247-1
K. Solankee, K. Kapadia, K. Upadhyay and J. Patel, Orient. J. Chem., 17, 302 (2001).
A. Venkanna, B. Siva, B. Poornima, P.R. Rao Vadaparthi, K.R. Prasad, K.A. Reddy, G.B.P. Reddy and K.S. Babu, Fitoterapia, 95, 102 (2014); https://doi.org/10.1016/j.fitote.2014.03.003
X.Y. Meng, H.X. Zhang, M. Mezei and M. Cui, Curr. Comput. Aided Drug Des., 7, 146 (2011); https://doi.org/10.2174/157340911795677602