Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
FT-IR, FT-Raman, NMR Spectroscopic and DFT Quantum Chemical Investigations of 6-Methylcoumarin
Corresponding Author(s) : V. Arjunan
Asian Journal of Chemistry,
Vol. 33 No. 11 (2021): Vol 33 Issue 11, 2021
Abstract
The structural geometry, electronic and reactivity characteristics, vibrational assignments and the fundamental modes of 6-methylcoumarin have been carried out. The effect of methyl group on the pyrone skeletal vibrations was also discussed. The experimental vibrational frequencies were compared with the wavenumbers obtained theoretically from the B3LYP method employing the high level 6-311++G** and cc-pVTZ basis sets. Frontier molecular orbital (FMO) energy and the LUMO-HOMO energy gap was measured. The atomic charges and the bond properties were examined by natural bond orbital analysis. The hydrogen and carbon environment were examined by NMR spectra. The nuclophilic, electrophilic and free radical attacking sites of 6-methylcoumarin were also analyzed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.S. Francisco, C.S. Francisco, A.F. Constantino, Á.C. Neto and V. Lacerda Jr., Curr. Org. Chem., 23, 2722 (2019); https://doi.org/10.2174/1385272823666191121150047
- F. Annunziata, C. Pinna, S. Dallavalle, L. Tamborini and A. Pinto, Int. J. Mol. Sci., 21, 4618 (2020); https://doi.org/10.3390/ijms21134618
- A. Stefanachi, F. Leonetti, L. Pisani, M. Catto and A. Carotti, Molecules, 23, 250 (2018); https://doi.org/10.3390/molecules23020250
- L.C. Di Stasi, Molecules, 26, 422 (2021); https://doi.org/10.3390/molecules26020422
- C.T. Supuran, J. Enzym. Inhibit. Med. Chem., 35, 1462 (2020); https://doi.org/10.1080/14756366.2020.1788009
- A. Bouhaoui, M. Eddahmi, M. Dib, M. Khouili, A. Aires, M. Catto and L. Bouissane, ChemistrySelect, 6, 5848 (2021); https://doi.org/10.1002/slct.202101346
- K.N. Venugopala, Rashmi and B. Odhav, BioMed Res. Int., 2013, 963248 (2013); https://doi.org/10.1155/2013/963248
- H. Chang, M. Shi, Y.-N. Sun and J.-Q. Jiang, Chin. J. Polym. Sci., 33, 1086 (2015); https://doi.org/10.1007/s10118-015-1657-4
- V. Arjunan, S. Sakiladevi, M.K. Marchewka and S. Mohan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 109, 79 (2013); https://doi.org/10.1016/j.saa.2013.01.100
- V. Arjunan, R. Santhanam, S. Sakiladevi, M.K. Marchewka and S. Mohan, J. Mol. Struct., 1037, 305 (2013); https://doi.org/10.1016/j.molstruc.2013.01.014
- A. Stamm, K. Schwing and M. Gerhards, J. Chem. Phys., 141, 194304 (2014); https://doi.org/10.1063/1.4900893
- M. Arivazhagan, R. Kavitha and V.P. Subhasini, Spectrochim. Acta A Mol. Biomol. Spectrosc., 130, 502 (2014); https://doi.org/10.1016/j.saa.2014.04.001
- N. Udaya Sri, K. Chaitanya, M.V.S. Prasad, V. Veeraiah and A. Veeraiah, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 728 (2012); https://doi.org/10.1016/j.saa.2012.07.055
- J. Tonannavar, J. Yenagi, V. Sortur, V.B. Jadhav and M.V. Kulkarni, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 351 (2010); https://doi.org/10.1016/j.saa.2010.03.013
- A. Ramoji, J. Yenagi, J. Tonannavar, V.B. Jadhav and M.V. Kulkarni, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 1039 (2010); https://doi.org/10.1016/j.saa.2010.08.070
- I. Sidir, Y.G. Sidir, M. Kumalar and E. Tasal, J. Mol. Struct., 964, 134 (2010); https://doi.org/10.1016/j.molstruc.2009.11.023
- A.N. Castro, L.R. Almeida, M.M. Anjos, G.R. Oliveira, H.B. Napolitano, C. Valverde and B. Baseia, Chem. Phys. Lett., 653, 122 (2016); https://doi.org/10.1016/j.cplett.2016.04.070
- F. Zhang, H. Zhang, D. Fang and Q. Liu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71, 710 (2008); https://doi.org/10.1016/j.saa.2008.01.035
- V. Sortur, J. Yenagi, J. Tonannavar, V.B. Jadhav and M.V. Kulkarni, Spectrochim. Acta A Mol. Biomol. Spectrosc., 64, 301 (2006); https://doi.org/10.1016/j.saa.2005.07.024
- R.O. Juvonen, M. Kuusisto, C. Fohrgrup, M.H. Pitkanen, T.J. Nevalainen, S. Auriola, H. Raunio, M. Pasanen and O.T. Pentikainen, Xenobiotica, 46, 14 (2015); https://doi.org/10.3109/00498254.2015.1048327
- A.R. Hernández, L.F. Ospina and D.M. Aragón, Biomed. Chromatogr., 29, 176 (2015); https://doi.org/10.1002/bmc.3253
- J.-S. Lan, L.-F. Pan, S.-S. Xie, X.-B. Wang and L.-Y. Kong, Med. Chem. Commun., 6, 592 (2015); https://doi.org/10.1039/C4MD00437J
- M.J. Matos, F. Pérez-Cruz, S. Vazquez-Rodriguez, E. Uriarte, L. Santana, F. Borges and C. Olea-Azar, Bioorg. Med. Chem., 21, 3900 (2013); https://doi.org/10.1016/j.bmc.2013.04.015
- B.C. Pemberton, A. Ugrinov and J. Sivaguru, J. Photochem. Photobiol. Chem., 255, 10 (2013); https://doi.org/10.1016/j.jphotochem.2013.01.005
- J.-F. Nie, H.-L. Wu, S.-H. Zhu, Q.-J. Han, H.-Y. Fu, S.-F. Li and R.-Q. Yu, Talanta, 75, 1260 (2008); https://doi.org/10.1016/j.talanta.2008.01.026
- P. Hohenberg and W. Kohn, Phys. Rev. B, 136(3B), 864 (1964); https://doi.org/10.1103/PhysRev.136.B864
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- A.D. Becke, Phys. Rev. A, 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford, CT (2009).
- J.S. Murray and K. Sen, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam (1996).
- R.I. Dennington, T. Keith and J. Millam, GaussView, Version 5.0.8, Semichem. Inc., Shawnee Mission, KS (2008).
- J.P. Foster and F. Weinhold, J. Am. Chem. Soc., 102, 7211 (1980); https://doi.org/10.1021/ja00544a007
- A.E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); https://doi.org/10.1063/1.449486
- A.E. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983); https://doi.org/10.1063/1.445134
- R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088
- K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
- M.K. Kokila, A. Jain, Puttaraja, M.V. Kulkarni and N.C. Shivaprakash, Acta Crystallogr. C, 51, 2585 (1995); https://doi.org/10.1107/S0108270195006263
- Y. Yamada, M. Okamoto, H. Kikuzaki and N. Nakatani, Biosci. Biotechnol. Biochem., 61, 740 (1997); https://doi.org/10.1271/bbb.61.740
- H. Fuhrer, V.B. Kartha, K.L. Kidd, P.J. Kruger and H.H. Mantsch, Computer Program for Infrared and Spectrometry, Normal Coordinate Analysis, National Research Council, Ottawa, Canada, vol. 5 (1976).
- Y. Uesugi, M. Mizuno, A. Shimojima and H. Takahashi, J. Phys. Chem. A, 101, 268 (1997); https://doi.org/10.1021/jp9626881
- V. Krishnakumar and R.J. Xavier and J. Indian Pure Appl. Phys., 41, 597 (2003).
- M.K. Subramanian, P.M. Anbarasan and S. Manimegalai, Pramana- J. Phys., 74, 845 (2010); https://doi.org/10.1007/s12043-010-0104-x
- B.C. Smith, Infrared Spectral Interpretation: A Systematic Approach, CRC Press, Boca Raton, Florida (1998).
- G. Socrates, Infrared and Raman Characteristic Group Frequencies – Tables and Charts, John Wiley & Sons, Chichester, Ed.: 3 (2001).
- G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press: NewYork (1969).
- N.P. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley: New York (1994).
- N. Udaya Sri, K. Chaitanya, M.V.S. Prasad, V. Veeraiah and A. Veeraiah, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 728 (2012); https://doi.org/10.1016/j.saa.2012.07.055
- V. Arjunan and S. Mohan, J. Mol. Struct., 892, 289 (2008); https://doi.org/10.1016/j.molstruc.2008.05.053
- V. Arjunan and S. Mohan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 72, 436 (2009); https://doi.org/10.1016/j.saa.2008.10.017
- J.O. Jensen, A. Banerjee, C.N. Merrow, D. Zeroka and J. Michael Lochner, J. Mol. Struct. THEOCHEM, 531, 323 (2000); https://doi.org/10.1016/S0166-1280(00)00465-6
- V. Arjunan, P. Ravindran, T. Rani and S. Mohan, J. Mol. Struct., 988, 91 (2011); https://doi.org/10.1016/j.molstruc.2010.12.032
- R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identification of Organic Compounds, Wiley: New York, Ed.: 5, p. 245 (1991).
References
C.S. Francisco, C.S. Francisco, A.F. Constantino, Á.C. Neto and V. Lacerda Jr., Curr. Org. Chem., 23, 2722 (2019); https://doi.org/10.2174/1385272823666191121150047
F. Annunziata, C. Pinna, S. Dallavalle, L. Tamborini and A. Pinto, Int. J. Mol. Sci., 21, 4618 (2020); https://doi.org/10.3390/ijms21134618
A. Stefanachi, F. Leonetti, L. Pisani, M. Catto and A. Carotti, Molecules, 23, 250 (2018); https://doi.org/10.3390/molecules23020250
L.C. Di Stasi, Molecules, 26, 422 (2021); https://doi.org/10.3390/molecules26020422
C.T. Supuran, J. Enzym. Inhibit. Med. Chem., 35, 1462 (2020); https://doi.org/10.1080/14756366.2020.1788009
A. Bouhaoui, M. Eddahmi, M. Dib, M. Khouili, A. Aires, M. Catto and L. Bouissane, ChemistrySelect, 6, 5848 (2021); https://doi.org/10.1002/slct.202101346
K.N. Venugopala, Rashmi and B. Odhav, BioMed Res. Int., 2013, 963248 (2013); https://doi.org/10.1155/2013/963248
H. Chang, M. Shi, Y.-N. Sun and J.-Q. Jiang, Chin. J. Polym. Sci., 33, 1086 (2015); https://doi.org/10.1007/s10118-015-1657-4
V. Arjunan, S. Sakiladevi, M.K. Marchewka and S. Mohan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 109, 79 (2013); https://doi.org/10.1016/j.saa.2013.01.100
V. Arjunan, R. Santhanam, S. Sakiladevi, M.K. Marchewka and S. Mohan, J. Mol. Struct., 1037, 305 (2013); https://doi.org/10.1016/j.molstruc.2013.01.014
A. Stamm, K. Schwing and M. Gerhards, J. Chem. Phys., 141, 194304 (2014); https://doi.org/10.1063/1.4900893
M. Arivazhagan, R. Kavitha and V.P. Subhasini, Spectrochim. Acta A Mol. Biomol. Spectrosc., 130, 502 (2014); https://doi.org/10.1016/j.saa.2014.04.001
N. Udaya Sri, K. Chaitanya, M.V.S. Prasad, V. Veeraiah and A. Veeraiah, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 728 (2012); https://doi.org/10.1016/j.saa.2012.07.055
J. Tonannavar, J. Yenagi, V. Sortur, V.B. Jadhav and M.V. Kulkarni, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 351 (2010); https://doi.org/10.1016/j.saa.2010.03.013
A. Ramoji, J. Yenagi, J. Tonannavar, V.B. Jadhav and M.V. Kulkarni, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 1039 (2010); https://doi.org/10.1016/j.saa.2010.08.070
I. Sidir, Y.G. Sidir, M. Kumalar and E. Tasal, J. Mol. Struct., 964, 134 (2010); https://doi.org/10.1016/j.molstruc.2009.11.023
A.N. Castro, L.R. Almeida, M.M. Anjos, G.R. Oliveira, H.B. Napolitano, C. Valverde and B. Baseia, Chem. Phys. Lett., 653, 122 (2016); https://doi.org/10.1016/j.cplett.2016.04.070
F. Zhang, H. Zhang, D. Fang and Q. Liu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71, 710 (2008); https://doi.org/10.1016/j.saa.2008.01.035
V. Sortur, J. Yenagi, J. Tonannavar, V.B. Jadhav and M.V. Kulkarni, Spectrochim. Acta A Mol. Biomol. Spectrosc., 64, 301 (2006); https://doi.org/10.1016/j.saa.2005.07.024
R.O. Juvonen, M. Kuusisto, C. Fohrgrup, M.H. Pitkanen, T.J. Nevalainen, S. Auriola, H. Raunio, M. Pasanen and O.T. Pentikainen, Xenobiotica, 46, 14 (2015); https://doi.org/10.3109/00498254.2015.1048327
A.R. Hernández, L.F. Ospina and D.M. Aragón, Biomed. Chromatogr., 29, 176 (2015); https://doi.org/10.1002/bmc.3253
J.-S. Lan, L.-F. Pan, S.-S. Xie, X.-B. Wang and L.-Y. Kong, Med. Chem. Commun., 6, 592 (2015); https://doi.org/10.1039/C4MD00437J
M.J. Matos, F. Pérez-Cruz, S. Vazquez-Rodriguez, E. Uriarte, L. Santana, F. Borges and C. Olea-Azar, Bioorg. Med. Chem., 21, 3900 (2013); https://doi.org/10.1016/j.bmc.2013.04.015
B.C. Pemberton, A. Ugrinov and J. Sivaguru, J. Photochem. Photobiol. Chem., 255, 10 (2013); https://doi.org/10.1016/j.jphotochem.2013.01.005
J.-F. Nie, H.-L. Wu, S.-H. Zhu, Q.-J. Han, H.-Y. Fu, S.-F. Li and R.-Q. Yu, Talanta, 75, 1260 (2008); https://doi.org/10.1016/j.talanta.2008.01.026
P. Hohenberg and W. Kohn, Phys. Rev. B, 136(3B), 864 (1964); https://doi.org/10.1103/PhysRev.136.B864
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
A.D. Becke, Phys. Rev. A, 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford, CT (2009).
J.S. Murray and K. Sen, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam (1996).
R.I. Dennington, T. Keith and J. Millam, GaussView, Version 5.0.8, Semichem. Inc., Shawnee Mission, KS (2008).
J.P. Foster and F. Weinhold, J. Am. Chem. Soc., 102, 7211 (1980); https://doi.org/10.1021/ja00544a007
A.E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); https://doi.org/10.1063/1.449486
A.E. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983); https://doi.org/10.1063/1.445134
R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088
K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
M.K. Kokila, A. Jain, Puttaraja, M.V. Kulkarni and N.C. Shivaprakash, Acta Crystallogr. C, 51, 2585 (1995); https://doi.org/10.1107/S0108270195006263
Y. Yamada, M. Okamoto, H. Kikuzaki and N. Nakatani, Biosci. Biotechnol. Biochem., 61, 740 (1997); https://doi.org/10.1271/bbb.61.740
H. Fuhrer, V.B. Kartha, K.L. Kidd, P.J. Kruger and H.H. Mantsch, Computer Program for Infrared and Spectrometry, Normal Coordinate Analysis, National Research Council, Ottawa, Canada, vol. 5 (1976).
Y. Uesugi, M. Mizuno, A. Shimojima and H. Takahashi, J. Phys. Chem. A, 101, 268 (1997); https://doi.org/10.1021/jp9626881
V. Krishnakumar and R.J. Xavier and J. Indian Pure Appl. Phys., 41, 597 (2003).
M.K. Subramanian, P.M. Anbarasan and S. Manimegalai, Pramana- J. Phys., 74, 845 (2010); https://doi.org/10.1007/s12043-010-0104-x
B.C. Smith, Infrared Spectral Interpretation: A Systematic Approach, CRC Press, Boca Raton, Florida (1998).
G. Socrates, Infrared and Raman Characteristic Group Frequencies – Tables and Charts, John Wiley & Sons, Chichester, Ed.: 3 (2001).
G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press: NewYork (1969).
N.P. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley: New York (1994).
N. Udaya Sri, K. Chaitanya, M.V.S. Prasad, V. Veeraiah and A. Veeraiah, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 728 (2012); https://doi.org/10.1016/j.saa.2012.07.055
V. Arjunan and S. Mohan, J. Mol. Struct., 892, 289 (2008); https://doi.org/10.1016/j.molstruc.2008.05.053
V. Arjunan and S. Mohan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 72, 436 (2009); https://doi.org/10.1016/j.saa.2008.10.017
J.O. Jensen, A. Banerjee, C.N. Merrow, D. Zeroka and J. Michael Lochner, J. Mol. Struct. THEOCHEM, 531, 323 (2000); https://doi.org/10.1016/S0166-1280(00)00465-6
V. Arjunan, P. Ravindran, T. Rani and S. Mohan, J. Mol. Struct., 988, 91 (2011); https://doi.org/10.1016/j.molstruc.2010.12.032
R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identification of Organic Compounds, Wiley: New York, Ed.: 5, p. 245 (1991).