Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Antibacterial Activity of Borassus flabellifer Vinegar-Graphene Quantum Dots Against Gram-Positive and Gram-Negative Bacteria
Corresponding Author(s) : Prawit Nuengmatcha
Asian Journal of Chemistry,
Vol. 33 No. 11 (2021): Vol 33 Issue 11, 2021
Abstract
Borassus flabellifer vinegar–graphene quantum dots (BFV-GQDs) were successfully synthesized using a pyrolysis method with Borassus flabellifer vinegar (BFV) as the precursor. All the samples were characterized using ultraviolet-visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The antibacterial activities of BFV-GQDs against strains of Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) were determined using the agar well diffusion method for preliminary screening, while minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth macro-dilution method. The zones of inhibition were compared with those of citric acid–graphene quantum dots (CA-GQDs). It was observed that the synthesized BFV-GQDs demonstrated excellent antibacterial activity against Staphylococcus aureus (82.3%) and good antibacterial activity against Escherichia coli (73.3%). The MIC of BFV-GQDs against E. coli was 6.25 mg/mL and S. aureus was 12.5 mg/mL, whereas the MBC of BFV-GQDs against E. coli was 12.5 mg/mL and S. aureus was 25.0 mg/mL.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Arakha, S. Pal, D. Samantarrai, T.K. Panigrahi, B.C. Mallick, K. Pramanik, B. Mallick and S. Jha, Sci. Rep., 5, 14813 (2015); https://doi.org/10.1038/srep14813
- M. Bhushan, Y. Kumar, L. Periyasamy and A.K. Viswanath, Appl. Nanosci., 8, 137 (2018); https://doi.org/10.1007/s13204-018-0656-5
- R. Prucek, J. Tucek, M. Kilianova, A. Panacek, L. Kvitek, J. Filip, M. Kolar, K. Tomankova and R. Zboril, Biomaterials, 32, 4704 (2011); https://doi.org/10.1016/j.biomaterials.2011.03.039
- K. Rana, J. Singh and J.H. Ahn, J. Mater. Chem. C Mater. Opt. Electron. Devices, 2, 2646 (2014); https://doi.org/10.1039/C3TC32264E
- C. Chung, Y.K. Kim, D. Shin, S.R. Ryoo, B.H. Hong and D.H. Min, Acc. Chem. Res., 46, 2211 (2013); https://doi.org/10.1021/ar300159f
- W. Osman, H. Abdelsalam, M. Ali, N.H. Teleb, I.S. Yahia, M.A. Ibrahim and Q. Zhang, J. Mater. Res. Technol., 11, 1517 (2021); https://doi.org/10.1016/j.jmrt.2021.01.119
- V. Selvaraj and H. Krishnan, Appl. Therm. Eng., 187, 116580 (2021); https://doi.org/10.1016/j.applthermaleng.2021.116580
- S. Veeresh, H. Ganesh, Y.S. Nagaraju, M. Vandana, S.P. Ashokkumar, H. Vijeth, M.V.N.A. Prasad and H. Devendrappa, Diamond Rel. Mater., 114, 108289 (2021); https://doi.org/10.1016/j.diamond.2021.108289
- N.X. Viet, S. Kishimoto and Y. Ohno, ACS Appl. Mater. Interfaces, 11, 6389 (2019); https://doi.org/10.1021/acsami.8b19252
- M. Yilmaz, S.-H. Hsu, S. Raina, M. Howell, W.P. Kang and J.-H. Huang, J. Renew. Sustain. Energy, 10, 063501 (2018); https://doi.org/10.1063/1.5049482
- M.E. Ali, M.E. Hoque, S.K.S. Hossain and M.C. Biswas, Int. J. Environ. Sci. Technol., 17, 4095 (2020); https://doi.org/10.1007/s13762-020-02755-4
- M.E.A. El-Sayed, Sci. Total Environ., 739, 139903 (2020); https://doi.org/10.1016/j.scitotenv.2020.139903
- A. Suddai, P. Nuengmatcha, P. Sricharoen, N. Limchoowong and S. Chanthai, RSC Adv., 8, 4162 (2018); https://doi.org/10.1039/C7RA12999H
- A. Noypha, Y. Areerob, S. Chanthai and P. Nuengmatcha, J. Korean Ceram. Soc., 58, 297 (2021); https://doi.org/10.1007/s43207-020-00096-z
- P. Nuengmatcha, P. Porrawatkul, S. Chanthai, P. Sricharoen and N. Limchoowong, J. Environ. Chem. Eng., 7, 103438 (2019); https://doi.org/10.1016/j.jece.2019.103438
- P. Kaewanan, P. Sricharoen, N. Limchoowong, T. Sripakdee, P. Nuengmatcha and S. Chanthai, RSC Adv., 7, 48058 (2017); https://doi.org/10.1039/C7RA09126E
- P. Nuengmatcha, P. Sricharoen, N. Limchoowong, R. Mahachai and S. Chanthai, RSC Adv., 8, 1407 (2018); https://doi.org/10.1039/C7RA12327B
- C. Zhao, X. Wang, L. Wu, W. Wu, Y. Zheng, L. Lin, S. Weng and X. Lin, Colloids Surf. B Biointerfaces, 179, 17 (2019); https://doi.org/10.1016/j.colsurfb.2019.03.042
- S. Sheik Mydeen, R. Raj Kumar, R. Sivakumar, S. Sambathkumar, M. Kottaisamy and V.S. Vasantha, Chem. Phys. Lett., 761, 138009 (2020); https://doi.org/10.1016/j.cplett.2020.138009
- H. Teymourinia, O. Amiri and M. Salavati-Niasari, Chemosphere, 267, 129293 (2021); https://doi.org/10.1016/j.chemosphere.2020.129293
- P. Sen and T. Nyokong, Photodiagn. Photodyn. Ther., 34, 102300 (2021); https://doi.org/10.1016/j.pdpdt.2021.102300
- K. Habiba, D.P. Bracho-Rincon, J.A. Gonzalez-Feliciano, J.C. Villalobos-Santos, V.I. Makarov, D. Ortiz, J.A. Avalos, C.I. Gonzalez, B.R. Weiner and G. Morell, Appl. Mater. Today, 1, 80 (2015); https://doi.org/10.1016/j.apmt.2015.10.001
- N. Wang, H.H. Xu, S. Sun, P. Guo, Y. Wang, C. Qian, Y. Zhong and D. Yang, J. Photochem. Photobiol. B, 210, 111978 (2020); https://doi.org/10.1016/j.jphotobiol.2020.111978
- P. Tian, L. Tang, K.S. Teng and S.P. Lau, Mater. Today Chem., 10, 221 (2018); https://doi.org/10.1016/j.mtchem.2018.09.007
- A. Tadesse, D.R. Devi, M. Hagos, G.R. Battu and K. Basavai, Asian J. Nanosci. Mater., 1, 36 (2018); https://doi.org/10.26655/ajnanomat.2018.1.5
- K. Jlassi, S. Mallick, A. Eribi, M.M. Chehimi, Z. Ahmad, F. Touati and I. Krupa, Sens. Actuators B Chem., 328, 129058 (2021); https://doi.org/10.1016/j.snb.2020.129058
- K. Rajendiran, Z. Zhao, D.S. Pei and A. Fu, Polymers, 11, 1670 (2019); https://doi.org/10.3390/polym11101670
References
M. Arakha, S. Pal, D. Samantarrai, T.K. Panigrahi, B.C. Mallick, K. Pramanik, B. Mallick and S. Jha, Sci. Rep., 5, 14813 (2015); https://doi.org/10.1038/srep14813
M. Bhushan, Y. Kumar, L. Periyasamy and A.K. Viswanath, Appl. Nanosci., 8, 137 (2018); https://doi.org/10.1007/s13204-018-0656-5
R. Prucek, J. Tucek, M. Kilianova, A. Panacek, L. Kvitek, J. Filip, M. Kolar, K. Tomankova and R. Zboril, Biomaterials, 32, 4704 (2011); https://doi.org/10.1016/j.biomaterials.2011.03.039
K. Rana, J. Singh and J.H. Ahn, J. Mater. Chem. C Mater. Opt. Electron. Devices, 2, 2646 (2014); https://doi.org/10.1039/C3TC32264E
C. Chung, Y.K. Kim, D. Shin, S.R. Ryoo, B.H. Hong and D.H. Min, Acc. Chem. Res., 46, 2211 (2013); https://doi.org/10.1021/ar300159f
W. Osman, H. Abdelsalam, M. Ali, N.H. Teleb, I.S. Yahia, M.A. Ibrahim and Q. Zhang, J. Mater. Res. Technol., 11, 1517 (2021); https://doi.org/10.1016/j.jmrt.2021.01.119
V. Selvaraj and H. Krishnan, Appl. Therm. Eng., 187, 116580 (2021); https://doi.org/10.1016/j.applthermaleng.2021.116580
S. Veeresh, H. Ganesh, Y.S. Nagaraju, M. Vandana, S.P. Ashokkumar, H. Vijeth, M.V.N.A. Prasad and H. Devendrappa, Diamond Rel. Mater., 114, 108289 (2021); https://doi.org/10.1016/j.diamond.2021.108289
N.X. Viet, S. Kishimoto and Y. Ohno, ACS Appl. Mater. Interfaces, 11, 6389 (2019); https://doi.org/10.1021/acsami.8b19252
M. Yilmaz, S.-H. Hsu, S. Raina, M. Howell, W.P. Kang and J.-H. Huang, J. Renew. Sustain. Energy, 10, 063501 (2018); https://doi.org/10.1063/1.5049482
M.E. Ali, M.E. Hoque, S.K.S. Hossain and M.C. Biswas, Int. J. Environ. Sci. Technol., 17, 4095 (2020); https://doi.org/10.1007/s13762-020-02755-4
M.E.A. El-Sayed, Sci. Total Environ., 739, 139903 (2020); https://doi.org/10.1016/j.scitotenv.2020.139903
A. Suddai, P. Nuengmatcha, P. Sricharoen, N. Limchoowong and S. Chanthai, RSC Adv., 8, 4162 (2018); https://doi.org/10.1039/C7RA12999H
A. Noypha, Y. Areerob, S. Chanthai and P. Nuengmatcha, J. Korean Ceram. Soc., 58, 297 (2021); https://doi.org/10.1007/s43207-020-00096-z
P. Nuengmatcha, P. Porrawatkul, S. Chanthai, P. Sricharoen and N. Limchoowong, J. Environ. Chem. Eng., 7, 103438 (2019); https://doi.org/10.1016/j.jece.2019.103438
P. Kaewanan, P. Sricharoen, N. Limchoowong, T. Sripakdee, P. Nuengmatcha and S. Chanthai, RSC Adv., 7, 48058 (2017); https://doi.org/10.1039/C7RA09126E
P. Nuengmatcha, P. Sricharoen, N. Limchoowong, R. Mahachai and S. Chanthai, RSC Adv., 8, 1407 (2018); https://doi.org/10.1039/C7RA12327B
C. Zhao, X. Wang, L. Wu, W. Wu, Y. Zheng, L. Lin, S. Weng and X. Lin, Colloids Surf. B Biointerfaces, 179, 17 (2019); https://doi.org/10.1016/j.colsurfb.2019.03.042
S. Sheik Mydeen, R. Raj Kumar, R. Sivakumar, S. Sambathkumar, M. Kottaisamy and V.S. Vasantha, Chem. Phys. Lett., 761, 138009 (2020); https://doi.org/10.1016/j.cplett.2020.138009
H. Teymourinia, O. Amiri and M. Salavati-Niasari, Chemosphere, 267, 129293 (2021); https://doi.org/10.1016/j.chemosphere.2020.129293
P. Sen and T. Nyokong, Photodiagn. Photodyn. Ther., 34, 102300 (2021); https://doi.org/10.1016/j.pdpdt.2021.102300
K. Habiba, D.P. Bracho-Rincon, J.A. Gonzalez-Feliciano, J.C. Villalobos-Santos, V.I. Makarov, D. Ortiz, J.A. Avalos, C.I. Gonzalez, B.R. Weiner and G. Morell, Appl. Mater. Today, 1, 80 (2015); https://doi.org/10.1016/j.apmt.2015.10.001
N. Wang, H.H. Xu, S. Sun, P. Guo, Y. Wang, C. Qian, Y. Zhong and D. Yang, J. Photochem. Photobiol. B, 210, 111978 (2020); https://doi.org/10.1016/j.jphotobiol.2020.111978
P. Tian, L. Tang, K.S. Teng and S.P. Lau, Mater. Today Chem., 10, 221 (2018); https://doi.org/10.1016/j.mtchem.2018.09.007
A. Tadesse, D.R. Devi, M. Hagos, G.R. Battu and K. Basavai, Asian J. Nanosci. Mater., 1, 36 (2018); https://doi.org/10.26655/ajnanomat.2018.1.5
K. Jlassi, S. Mallick, A. Eribi, M.M. Chehimi, Z. Ahmad, F. Touati and I. Krupa, Sens. Actuators B Chem., 328, 129058 (2021); https://doi.org/10.1016/j.snb.2020.129058
K. Rajendiran, Z. Zhao, D.S. Pei and A. Fu, Polymers, 11, 1670 (2019); https://doi.org/10.3390/polym11101670