Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Simple and Effective Bio-adsorbent Generated from the Stems of Momordica charantia Plant for the Simultaneous Removal of Lead and Cadmium Ions from Wastewater
Corresponding Author(s) : Kunta Ravindhranath
Asian Journal of Chemistry,
Vol. 33 No. 11 (2021): Vol 33 Issue 11, 2021
Abstract
Sulphuric acid generated activated carbon from the stems of Momordica charantia (MCSAC) was identified to adsorb lead(II) and cadmium(II) ions from water. Extraction conditions were optimized. At pH: 6, both the ions can be simultaneous removed by 2.0 mg/L of MCSAC after an equilibration period of 90 min at room temperate (30 ± 2 ºC). The sorption capacities were observed to be 21.0 mg/g for Pb2+ and 18.9 mg/g for Cd2+. MCSAC was characterized by conventional methods and also by surface morphology assessing techniques such as XRD, FTIR and FESEM. The sorption mechanism was investigated by evaluating thermodynamic parameters and by adopting various kinetic and isothermal models. High ΔH values of 29.399 KJ/mol for Pb2+ and 33.222 KJ/mol for Cd2+, indicated that the mechanism of sorption is ion exchange and /or complex formation between Pb2+/Cd2+ ions and surface functional groups present in MCSAC. Further, high positive ΔS values imply the presence of disorder at solid-liquid interface, favouring the metal ions to overcome the surface barrier and get adsorbed. The negative ΔG values indicates the spontaneity of sorption process. Spent MCSAC can be regenerated and reused for three cycles. The procedure developed using MCSAC as sorbent was successfully applied to treat real effluents samples collected from several industrial effluents. The novelty of the present investigation is that a simple biosorbent is developed for the effective simultaneous removal of highly toxic Pb2+ and Cd2+ from contaminated water.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Ali, E. Khan and I. Ilahi, J. Chem., 2019, 6730305 (2019); https://doi.org/10.1155/2019/6730305
- M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair and M. Sadeghi, Front. Pharmacol., 12, 643972 (2021); https://doi.org/10.3389/fphar.2021.643972
- N, Idrees, B. Tabassum, E.F. Abd Allah, A. Hashem, R. Sarah and M. Hashim, Saudi J. Biol. Sci., 25, 1365 (2018); https://doi.org/10.1016/j.sjbs.2018.07.005
- M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew and K.N. Beeregowda, Interdiscip. Toxicol., 7, 60 (2014); https://doi.org/10.2478/intox-2014-0009
- A.T. Jan, M. Azam, K. Siddiqui, A. Ali, I. Choi and Q.M.R. Haq, Int. J. Mol. Sci., 16, 29592 (2015); https://doi.org/10.3390/ijms161226183
- S.E. Orr and C.C. Bridges, Int. J. Mol. Sci., 18, 1039 (2017); https://doi.org/10.3390/ijms18051039
- A.D. Eaton, L.S. Clesceri, E.W. Rice and A.E. Greenberg, American Public Health Association (APHA) Standard Methods for the Examination of Water and Wastewater. Washington: American Water Works Association Water Pollution Control Federation (2005).
- N. Malik, A.K. Biswas, T.A. Qureshi, K. Borana and R. Virha, Environ. Monit. Assess., 160, 267 (2010); https://doi.org/10.1007/s10661-008-0693-8
- Metcalf and Eddy, Wastewater Engineering: Treatment of Reuse, McGraw Hill Co., New York, Ed. 4, (2003).
- G. Kiely, Environmental Engineering, McGraw-Hall International Editions (1998).
- F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011
- J.G. Meneguin, M.P. Moisés, T. Karchiyappan, S.H. Faria, M.L. Gimenes, M.A. de Barros and S. Venkatachalam, Process Saf. Environ. Prot., 111, 244 (2017); https://doi.org/10.1016/j.psep.2017.07.005
- S.H. Abdel-Halim, A.M.A. Shehata and M.F. El-Shahat, Water Res., 37, 1678 (2003); https://doi.org/10.1016/S0043-1354(02)00554-7
- M. Karnib, A. Kabbani, H. Holail and Z. Olama, Energy Procedia, 50, 113 (2014); https://doi.org/10.1016/j.egypro.2014.06.014
- P.V. Devi, M. Suneetha and K. Ravindhranath, Asian J. Chem., 31, 2233 (2019); https://doi.org/10.14233/ajchem.2019.22115
- C. Tang, Y. Shu, R. Zhang, X. Li, J. Song, B. Li, Y. Zhang and D. Ou, RSC Adv., 7, 16092 (2017); https://doi.org/10.1039/C6RA28035H
- S. Abdulrazak, K. Hussaini and H.M. Sani, Appl. Water Sci., 7, 3151 (2017); https://doi.org/10.1007/s13201-016-0460-x
- Y. Tian, J. Li, T.W. Whitcombe, W.B. McGill and R. Thring, Chem. Eng. J., 384, 123386 (2020); https://doi.org/10.1016/j.cej.2019.123386
- X. Li, C. Wang, J. Tian, J. Liu and G. Chen, Environ. Res., 186, 109502 (2020); https://doi.org/10.1016/j.envres.2020.109502
- R. Mopoung and N. Kengkhetkit, Int. J. Appl. Chem., 12, 23 (2016).
- M. Singanan, Sci. Asia, 37, 115 (2011); https://doi.org/10.2306/scienceasia1513-1874.2011.37.115
- A. Naga Babu, G.V. Krishna Mohan, K. Kalpana and K. Ravindhranath, J. Anal. Methods Chem., 2017, 4650594 (2017); https://doi.org/10.1155/2017/4650594
- A.J. Kang, M. Baghdadi and A. Pardakhti, Desalin. Water Treat., 57, 18782 (2016); https://doi.org/10.1080/19443994.2015.1095123
- S. Ravulapalli and R. Kunta, J. Environ. Chem. Eng., 6, 4298 (2018); https://doi.org/10.1016/j.jece.2018.06.033
- T.M. Alslaibi, I. Abustan, M.A. Ahmad and A. Abu Foul, Desalination Water Treat., 54, 166 (2015); https://doi.org/10.1080/19443994.2013.876672
- S. Mukherjee, D. Kumari, M. Joshi, A.K. An and M. Kumar, Int. J. Hyg. Environ. Health, 226, 113471 (2020); https://doi.org/10.1016/j.ijheh.2020.113471
- M.T. Amin, A.A. Alazba and M. Shafiq, Membranes, 11, 10 (2020); https://doi.org/10.3390/membranes11010010
- K.L. Wasewar, P. Kumar, S. Chand, B.N. Padmini and T.T. Teng, Clean– Soil, Air, Water, 38, 649 (2010); https://doi.org/10.1002/clen.201000004
- P.M. Thabede, N.D. Shooto and E.B. Naidoo, South Afr. J. Chem. Eng., 33, 39 (2020); https://doi.org/10.1016/j.sajce.2020.04.002
- F.Y. Wang, H. Wang and J.W. Ma, J. Hazard. Mater., 177, 300 (2010); https://doi.org/10.1016/j.jhazmat.2009.12.032
- Activated Carbon Powdered, Granular: Methods of Sampling and Tests. Bureau of Indian Standards, New Delhi, India ISI, 877 (1989).
- ASTM D4607-94 (2006); Standard Test Method for Determination of Iodine Number of Activated Carbons, In: American Society for Testing and Materials, pp. 1-5 (2006).
- A.N. El-Hendawy, S.E. Samra and B.S. Girgis, Colloids Surf. A Physicochem. Eng. Asp., 180, 209 (2001); https://doi.org/10.1016/S0927-7757(00)00682-8
- C. Namasivayam and K. Kadirvelu, Bioresour. Technol., 62, 123 (1997); https://doi.org/10.1016/S0960-8524(97)00074-6
- S. Brunauer, P.H. Emmett and E. Teller, J. Am. Chem. Soc., 60, 309 (1938); https://doi.org/10.1021/ja01269a023
- S.L. Pala and W.K. Biftu, M. Suneetha and K. Ravindhranath, Int. J. Environ. Anal. Chem., (2021); https://doi.org/10.1080/03067319.2021.1927004
- S. Ravulapalli and K. Ravindhranath, J. Taiwan Inst. Chem. Eng., 101, 50 (2019); https://doi.org/10.1016/j.jtice.2019.04.034
- K. Ravindhranath, Indian J. Chem. Technol., 25, 345 (2019).
- W.K. Biftu, M. Suneetha and K. Ravindhranath, Biomass Conv. Bioref., (2021); https://doi.org/10.1007/s13399-021-01568-w
- J.B. Alam, A.K. Dikshit and M. Bandyopadhayay, Sep. Purif. Technol., 42, 85 (2005); https://doi.org/10.1016/j.seppur.2004.06.006
- R. Alfaro-Cuevas-Villanueva, A.R. Hidalgo-Vázquez, C.D. Cortés Penagos and R. Cortés-Martínez, Scient. World J., 2014, 647512 (2014); https://doi.org/10.1155/2014/647512
- S. Ravulapalli and R. Kunta, Water Sci. Technol., 78, 1377 (2018); https://doi.org/10.2166/wst.2018.413
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004
- H.M. Freundlich, Z. Phys. Chem., 57U, 385 (1907); https://doi.org/10.1515/zpch-1907-5723
- M.M. Dubinin, Akad. Nauk. SSSR, 55, 327 (1947).
- M.J. Temkin and V. Pyzhev, Acta Physiochim. USSR 12, 217 (1940).
- K.R. Hall, L.C. Eagleton, A. Acrivos and T. Vermeulen, Ind. Eng. Chem. Fundam., 5, 212 (1966); https://doi.org/10.1021/i160018a011
- J.F. Corbett, J. Chem. Educ., 49, 663 (1972); https://doi.org/10.1021/ed049p663
- Y.S. Ho and G. McKay, Process Biochem., 34, 451 (1999); https://doi.org/10.1016/S0032-9592(98)00112-5
- G.V. Krishna Mohan, A. Naga Babu, K. Kalpana and K. Ravindhranath, Int. J. Environ. Sci. Technol., 16, 101 (2019); https://doi.org/10.1007/s13762-017-1593-7
- F.C. Wu, R.L. Tseng and R.S. Juang, Chem. Eng. J., 150, 366 (2009); https://doi.org/10.1016/j.cej.2009.01.014
- W.K. Biftu, S. Ravulapalli and R. Kunta, Int. J. Environ. Res., 14, 415 (2020); https://doi.org/10.1007/s41742-020-00268-z
- X. Huang, N.Y. Gao and Q.L. Zhang, J. Environ. Sci., 19, 1287 (2007); https://doi.org/10.1016/S1001-0742(07)60210-1
- P.J. Lloyd-Jones, J.R. Rangel-Mendez and M. Streat, Inst. Chem. Eng. Symp. Ser., 148, 847 (1999).
- J.H. Park, G. Choppala, S.J. Lee, N. Bolan, J.W. Chung and M. Edraki, Water, Air, Soil Pollut., 224, 1711 (2013); https://doi.org/10.1007/s11270-013-1711-1
References
H. Ali, E. Khan and I. Ilahi, J. Chem., 2019, 6730305 (2019); https://doi.org/10.1155/2019/6730305
M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair and M. Sadeghi, Front. Pharmacol., 12, 643972 (2021); https://doi.org/10.3389/fphar.2021.643972
N, Idrees, B. Tabassum, E.F. Abd Allah, A. Hashem, R. Sarah and M. Hashim, Saudi J. Biol. Sci., 25, 1365 (2018); https://doi.org/10.1016/j.sjbs.2018.07.005
M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew and K.N. Beeregowda, Interdiscip. Toxicol., 7, 60 (2014); https://doi.org/10.2478/intox-2014-0009
A.T. Jan, M. Azam, K. Siddiqui, A. Ali, I. Choi and Q.M.R. Haq, Int. J. Mol. Sci., 16, 29592 (2015); https://doi.org/10.3390/ijms161226183
S.E. Orr and C.C. Bridges, Int. J. Mol. Sci., 18, 1039 (2017); https://doi.org/10.3390/ijms18051039
A.D. Eaton, L.S. Clesceri, E.W. Rice and A.E. Greenberg, American Public Health Association (APHA) Standard Methods for the Examination of Water and Wastewater. Washington: American Water Works Association Water Pollution Control Federation (2005).
N. Malik, A.K. Biswas, T.A. Qureshi, K. Borana and R. Virha, Environ. Monit. Assess., 160, 267 (2010); https://doi.org/10.1007/s10661-008-0693-8
Metcalf and Eddy, Wastewater Engineering: Treatment of Reuse, McGraw Hill Co., New York, Ed. 4, (2003).
G. Kiely, Environmental Engineering, McGraw-Hall International Editions (1998).
F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011
J.G. Meneguin, M.P. Moisés, T. Karchiyappan, S.H. Faria, M.L. Gimenes, M.A. de Barros and S. Venkatachalam, Process Saf. Environ. Prot., 111, 244 (2017); https://doi.org/10.1016/j.psep.2017.07.005
S.H. Abdel-Halim, A.M.A. Shehata and M.F. El-Shahat, Water Res., 37, 1678 (2003); https://doi.org/10.1016/S0043-1354(02)00554-7
M. Karnib, A. Kabbani, H. Holail and Z. Olama, Energy Procedia, 50, 113 (2014); https://doi.org/10.1016/j.egypro.2014.06.014
P.V. Devi, M. Suneetha and K. Ravindhranath, Asian J. Chem., 31, 2233 (2019); https://doi.org/10.14233/ajchem.2019.22115
C. Tang, Y. Shu, R. Zhang, X. Li, J. Song, B. Li, Y. Zhang and D. Ou, RSC Adv., 7, 16092 (2017); https://doi.org/10.1039/C6RA28035H
S. Abdulrazak, K. Hussaini and H.M. Sani, Appl. Water Sci., 7, 3151 (2017); https://doi.org/10.1007/s13201-016-0460-x
Y. Tian, J. Li, T.W. Whitcombe, W.B. McGill and R. Thring, Chem. Eng. J., 384, 123386 (2020); https://doi.org/10.1016/j.cej.2019.123386
X. Li, C. Wang, J. Tian, J. Liu and G. Chen, Environ. Res., 186, 109502 (2020); https://doi.org/10.1016/j.envres.2020.109502
R. Mopoung and N. Kengkhetkit, Int. J. Appl. Chem., 12, 23 (2016).
M. Singanan, Sci. Asia, 37, 115 (2011); https://doi.org/10.2306/scienceasia1513-1874.2011.37.115
A. Naga Babu, G.V. Krishna Mohan, K. Kalpana and K. Ravindhranath, J. Anal. Methods Chem., 2017, 4650594 (2017); https://doi.org/10.1155/2017/4650594
A.J. Kang, M. Baghdadi and A. Pardakhti, Desalin. Water Treat., 57, 18782 (2016); https://doi.org/10.1080/19443994.2015.1095123
S. Ravulapalli and R. Kunta, J. Environ. Chem. Eng., 6, 4298 (2018); https://doi.org/10.1016/j.jece.2018.06.033
T.M. Alslaibi, I. Abustan, M.A. Ahmad and A. Abu Foul, Desalination Water Treat., 54, 166 (2015); https://doi.org/10.1080/19443994.2013.876672
S. Mukherjee, D. Kumari, M. Joshi, A.K. An and M. Kumar, Int. J. Hyg. Environ. Health, 226, 113471 (2020); https://doi.org/10.1016/j.ijheh.2020.113471
M.T. Amin, A.A. Alazba and M. Shafiq, Membranes, 11, 10 (2020); https://doi.org/10.3390/membranes11010010
K.L. Wasewar, P. Kumar, S. Chand, B.N. Padmini and T.T. Teng, Clean– Soil, Air, Water, 38, 649 (2010); https://doi.org/10.1002/clen.201000004
P.M. Thabede, N.D. Shooto and E.B. Naidoo, South Afr. J. Chem. Eng., 33, 39 (2020); https://doi.org/10.1016/j.sajce.2020.04.002
F.Y. Wang, H. Wang and J.W. Ma, J. Hazard. Mater., 177, 300 (2010); https://doi.org/10.1016/j.jhazmat.2009.12.032
Activated Carbon Powdered, Granular: Methods of Sampling and Tests. Bureau of Indian Standards, New Delhi, India ISI, 877 (1989).
ASTM D4607-94 (2006); Standard Test Method for Determination of Iodine Number of Activated Carbons, In: American Society for Testing and Materials, pp. 1-5 (2006).
A.N. El-Hendawy, S.E. Samra and B.S. Girgis, Colloids Surf. A Physicochem. Eng. Asp., 180, 209 (2001); https://doi.org/10.1016/S0927-7757(00)00682-8
C. Namasivayam and K. Kadirvelu, Bioresour. Technol., 62, 123 (1997); https://doi.org/10.1016/S0960-8524(97)00074-6
S. Brunauer, P.H. Emmett and E. Teller, J. Am. Chem. Soc., 60, 309 (1938); https://doi.org/10.1021/ja01269a023
S.L. Pala and W.K. Biftu, M. Suneetha and K. Ravindhranath, Int. J. Environ. Anal. Chem., (2021); https://doi.org/10.1080/03067319.2021.1927004
S. Ravulapalli and K. Ravindhranath, J. Taiwan Inst. Chem. Eng., 101, 50 (2019); https://doi.org/10.1016/j.jtice.2019.04.034
K. Ravindhranath, Indian J. Chem. Technol., 25, 345 (2019).
W.K. Biftu, M. Suneetha and K. Ravindhranath, Biomass Conv. Bioref., (2021); https://doi.org/10.1007/s13399-021-01568-w
J.B. Alam, A.K. Dikshit and M. Bandyopadhayay, Sep. Purif. Technol., 42, 85 (2005); https://doi.org/10.1016/j.seppur.2004.06.006
R. Alfaro-Cuevas-Villanueva, A.R. Hidalgo-Vázquez, C.D. Cortés Penagos and R. Cortés-Martínez, Scient. World J., 2014, 647512 (2014); https://doi.org/10.1155/2014/647512
S. Ravulapalli and R. Kunta, Water Sci. Technol., 78, 1377 (2018); https://doi.org/10.2166/wst.2018.413
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004
H.M. Freundlich, Z. Phys. Chem., 57U, 385 (1907); https://doi.org/10.1515/zpch-1907-5723
M.M. Dubinin, Akad. Nauk. SSSR, 55, 327 (1947).
M.J. Temkin and V. Pyzhev, Acta Physiochim. USSR 12, 217 (1940).
K.R. Hall, L.C. Eagleton, A. Acrivos and T. Vermeulen, Ind. Eng. Chem. Fundam., 5, 212 (1966); https://doi.org/10.1021/i160018a011
J.F. Corbett, J. Chem. Educ., 49, 663 (1972); https://doi.org/10.1021/ed049p663
Y.S. Ho and G. McKay, Process Biochem., 34, 451 (1999); https://doi.org/10.1016/S0032-9592(98)00112-5
G.V. Krishna Mohan, A. Naga Babu, K. Kalpana and K. Ravindhranath, Int. J. Environ. Sci. Technol., 16, 101 (2019); https://doi.org/10.1007/s13762-017-1593-7
F.C. Wu, R.L. Tseng and R.S. Juang, Chem. Eng. J., 150, 366 (2009); https://doi.org/10.1016/j.cej.2009.01.014
W.K. Biftu, S. Ravulapalli and R. Kunta, Int. J. Environ. Res., 14, 415 (2020); https://doi.org/10.1007/s41742-020-00268-z
X. Huang, N.Y. Gao and Q.L. Zhang, J. Environ. Sci., 19, 1287 (2007); https://doi.org/10.1016/S1001-0742(07)60210-1
P.J. Lloyd-Jones, J.R. Rangel-Mendez and M. Streat, Inst. Chem. Eng. Symp. Ser., 148, 847 (1999).
J.H. Park, G. Choppala, S.J. Lee, N. Bolan, J.W. Chung and M. Edraki, Water, Air, Soil Pollut., 224, 1711 (2013); https://doi.org/10.1007/s11270-013-1711-1