Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Facile Fabrication of g-C3N4/Fe3O4 Photocatalyst with Enhanced Visible-Light Photocatalytic Activity towards the Degradation of Tartrazine Dye
Corresponding Author(s) : A. Suganthi
Asian Journal of Chemistry,
Vol. 33 No. 10 (2021): Vol 33 Issue 10, 2021
Abstract
The removal of tartrazine dye from aqueous solution using g-C3N4/Fe3O4 nanocomposites was studied. The g-C3N4/Fe3O4 nanocomposites were synthesized using simple co-precipitation method. The synthesized nanocomposites were characterized by spectral (UV-Vis DRS, FT-IR) and analytical (PXRD, SEM, EDAX, HRTEM) techniques. Photodegradation of tartrazine dye using the synthesized catalyst was studied. The g-C3N4/Fe3O4 nanocomposites exhibited excellent photocatalytic performance by degrading tartrazine (90%) at 0.1 g/L of catalyst and 20 μM initial dye concentration at pH 3. The excellent performance by the catalyst was attributed to the highest electron hole pair generation. The kinetic study revealed that the photodegradation of tartrazine obeyed pseudo first-order kinetics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Wawrzkiewicz and Z. Hubicki, J. Hazard. Mater., 164, 502 (2009); https://doi.org/10.1016/j.jhazmat.2008.08.021
- N. Arabzadeh, A. Khosravi, A. Mohammadi and N.M. Mahmoodi, Desalination Water Treat., 57, 3142 (2016); https://doi.org/10.1080/19443994.2014.989414
- V.K. Gupta, R. Jain, A. Nayak, S. Agarwal and M. Shrivastava, Mater. Sci. Eng. C, 31, 1062 (2011); https://doi.org/10.1016/j.msec.2011.03.006
- H. Deng, J. Lu, G. Li, G. Zhang and X. Wang, Chem. Eng. J., 172, 326 (2011); https://doi.org/10.1016/j.cej.2011.06.013
- H. Chen, Curr. Protein Pept. Sci., 7, 101 (2006); https://doi.org/10.2174/138920306776359786
- D. Bilba, D. Suteu and T. Malutan, Open Chem., 6, 258 (2008); https://doi.org/10.2478/s11532-008-0019-2
- H. Jiang, P. Chen, S. Luo, X. Tu, Q. Cao and M. Shu, Appl. Surf. Sci., 284, 942 (2013); https://doi.org/10.1016/j.apsusc.2013.04.013
- R. Gong, X. Zhang, H. Liu, Y. Sun and B. Liu, Bioresour. Technol., 98, 1319 (2007); https://doi.org/10.1016/j.biortech.2006.04.034
- N. Dizge, C. Aydiner, E. Demirbas, M. Kobya and S. Kara, J. Hazard. Mater., 150, 737 (2008); https://doi.org/10.1016/j.jhazmat.2007.05.027
- A. Mittal, L. Kurup and J. Mittal, J. Hazard. Mater., 146, 243 (2007); https://doi.org/10.1016/j.jhazmat.2006.12.012
- P. Ratna, Int. J. Environ. Sci., 3, 940 (2012).
- C. Klett, A. Barry, I. Balti, P. Lelli, F. Schoenstein and N. Jouini, J. Environ. Chem. Eng., 2, 914 (2014); https://doi.org/10.1016/j.jece.2014.03.001
- M.-S. Li, Z.-P. Zhao and M.-X. Wang, Chem. Eng. J., 259, 53 (2015); https://doi.org/10.1016/j.ces.2014.09.015
- E. Akhondi, B. Wu, S. Sun, B. Marxer, W. Lim, J. Gu, M. Burkhardt, L. Liu, D. McDougald, W. Pronk and A.G. Fane, Water Res., 70, 158 (2015); https://doi.org/10.1016/j.watres.2014.12.001
- Y. Zhou, Y. Qin, W. Dai and X. Luo, ACS Omega, 4, 546 (2019); https://doi.org/10.1021/acsomega.8b03267
- F.C. Moreira, R.A.R. Boaventura, E. Brillas and V.J.P. Vilar, Appl. Catal. B: Environ., 202, 217 (2017); https://doi.org/10.1016/j.apcatb.2016.08.037
- I.P.A.F. Souza, L.H.S. Crespo, L. Spessato, S.A.R. Melo, A.F. Martins, A.L. Cazetta and V.C. Almeida, J. Environ. Chem. Eng., 9, 104753 (2021); https://doi.org/10.1016/j.jece.2020.104753
- W. Sangchay, J. Nanotechnol., 2017, 7902930 (2017); https://doi.org/10.1155/2017/7902930
- A. Aleboyeh, M.B. Kasiri, M.E. Olya and H. Aleboyeh, Dyes Pigments, 77, 288 (2008); https://doi.org/10.1016/j.dyepig.2007.05.014
- W. Wang, M.O. Tadé and Z. Shao, Chem. Soc. Rev., 44, 5371 (2015); https://doi.org/10.1039/C5CS00113G
- C. Chen, W. Ma and J. Zhao, Chem. Soc. Rev., 39, 4206 (2010); https://doi.org/10.1039/b921692h
- J. Zhu, S. Wei, H. Gu, S.B. Rapole, Q. Wang, N. Haldolaarachchige, Z. Luo, D.P. Young and Z. Guo, Environ. Sci. Technol., 46, 977 (2012); https://doi.org/10.1021/es2014133
- L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu and G. Cai, Dalton Trans., 42, 8606 (2013); https://doi.org/10.1039/c3dt00115f
- H. Li, J. Liu, W. Hou, N. Du, R. Zhang and X. Tao, Appl. Catal. B, 160-161, 89 (2014); https://doi.org/10.1016/j.apcatb.2014.05.019
- S. Kamal, S. Balu, S. Palanisamy, K. Uma, V. Velusamy and T.C.K. Yang, Results in Physics, 12, 1238 (2019); https://doi.org/10.1016/j.rinp.2019.01.004
- W. Guo, K. Fan, J. Zhang and C. Xu, Appl. Surf. Sci., 447, 125 (2018); https://doi.org/10.1016/j.apsusc.2018.03.080
- S.G. Kumar and L.G. Devi, J. Phys. Chem. A, 115, 13211 (2011); https://doi.org/10.1021/jp204364a
- S. Zhang, P. Gu, R. Ma, C. Luo, T. Wen, G. Zhao, W. Cheng and X. Wang, Catal. Today, 335, 65 (2019); https://doi.org/10.1016/j.cattod.2018.09.013
- B. Rhimi, C. Wang and D. Bahnemann, J. Phys. Energy, 2, 042003 (2020); https://doi.org/10.1088/2515-7655/abb782
- Y. Fu, T. Huang, L. Zhang, J. Zhu and X. Wang, Nanoscale, 7, 13723 (2015); https://doi.org/10.1039/C5NR03260A
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen and M. Antonietti, Nat. Mater., 8, 76 (2009); https://doi.org/10.1038/nmat2317
- B. Zhu, P. Xia, Y. Li, W. Ho and J. Yu, Appl. Surf. Sci., 391, 175 (2017); https://doi.org/10.1016/j.apsusc.2016.07.104
- L. Yang, J. Tian, J. Meng, R. Zhao, C. Li, J. Ma and T. Jin, Molecules, 23, 562 (2018); https://doi.org/10.3390/molecules23030562
- L. Liu, Y. Qi, J. Hu, Y. Liang and W. Cui, Appl. Surf. Sci., 351, 1146 (2015); https://doi.org/10.1016/j.apsusc.2015.06.119
- M. Rajabi, K. Mahanpoor and O. Moradi, Composites B Eng., 167, 544 (2019); https://doi.org/10.1016/j.compositesb.2019.03.030
- Y. Wang, X. Wang and M. Antonietti, Angew. Chem. Int. Ed., 51, 68 (2012); https://doi.org/10.1002/anie.201101182
- Y. Yao, Y. Cai, F. Lu, J. Qin, F. Wei, C. Xu and S. Wang, Ind. Eng. Chem. Res., 53, 17294 (2014); https://doi.org/10.1021/ie503437z
- P. Makula, M. Pacia and W. Macyk, J. Phys. Chem. Lett., 9, 6814 (2018); https://doi.org/10.1021/acs.jpclett.8b02892
- K. Vignesh, M. Rajarajan and A. Suganthi, J. Ind. Eng. Chem., 20, 3826 (2014); https://doi.org/10.1016/j.jiec.2013.12.086
- K. Vignesh, A. Suganthi, B.-K. Min, M. Rajarajan and M. Kang, RSC Adv., 5, 576 (2015); https://doi.org/10.1039/C4RA14291H
- K. Vignesh, R. Hariharan, M. Rajarajan and A. Suganthi, Mater. Sci. Semiconductor Process., 16, 1521 (2013); https://doi.org/10.1016/j.mssp.2013.04.025
- P. Bansal and D. Sud, Desalination, 267, 244 (2011); https://doi.org/10.1016/j.desal.2010.09.034
References
M. Wawrzkiewicz and Z. Hubicki, J. Hazard. Mater., 164, 502 (2009); https://doi.org/10.1016/j.jhazmat.2008.08.021
N. Arabzadeh, A. Khosravi, A. Mohammadi and N.M. Mahmoodi, Desalination Water Treat., 57, 3142 (2016); https://doi.org/10.1080/19443994.2014.989414
V.K. Gupta, R. Jain, A. Nayak, S. Agarwal and M. Shrivastava, Mater. Sci. Eng. C, 31, 1062 (2011); https://doi.org/10.1016/j.msec.2011.03.006
H. Deng, J. Lu, G. Li, G. Zhang and X. Wang, Chem. Eng. J., 172, 326 (2011); https://doi.org/10.1016/j.cej.2011.06.013
H. Chen, Curr. Protein Pept. Sci., 7, 101 (2006); https://doi.org/10.2174/138920306776359786
D. Bilba, D. Suteu and T. Malutan, Open Chem., 6, 258 (2008); https://doi.org/10.2478/s11532-008-0019-2
H. Jiang, P. Chen, S. Luo, X. Tu, Q. Cao and M. Shu, Appl. Surf. Sci., 284, 942 (2013); https://doi.org/10.1016/j.apsusc.2013.04.013
R. Gong, X. Zhang, H. Liu, Y. Sun and B. Liu, Bioresour. Technol., 98, 1319 (2007); https://doi.org/10.1016/j.biortech.2006.04.034
N. Dizge, C. Aydiner, E. Demirbas, M. Kobya and S. Kara, J. Hazard. Mater., 150, 737 (2008); https://doi.org/10.1016/j.jhazmat.2007.05.027
A. Mittal, L. Kurup and J. Mittal, J. Hazard. Mater., 146, 243 (2007); https://doi.org/10.1016/j.jhazmat.2006.12.012
P. Ratna, Int. J. Environ. Sci., 3, 940 (2012).
C. Klett, A. Barry, I. Balti, P. Lelli, F. Schoenstein and N. Jouini, J. Environ. Chem. Eng., 2, 914 (2014); https://doi.org/10.1016/j.jece.2014.03.001
M.-S. Li, Z.-P. Zhao and M.-X. Wang, Chem. Eng. J., 259, 53 (2015); https://doi.org/10.1016/j.ces.2014.09.015
E. Akhondi, B. Wu, S. Sun, B. Marxer, W. Lim, J. Gu, M. Burkhardt, L. Liu, D. McDougald, W. Pronk and A.G. Fane, Water Res., 70, 158 (2015); https://doi.org/10.1016/j.watres.2014.12.001
Y. Zhou, Y. Qin, W. Dai and X. Luo, ACS Omega, 4, 546 (2019); https://doi.org/10.1021/acsomega.8b03267
F.C. Moreira, R.A.R. Boaventura, E. Brillas and V.J.P. Vilar, Appl. Catal. B: Environ., 202, 217 (2017); https://doi.org/10.1016/j.apcatb.2016.08.037
I.P.A.F. Souza, L.H.S. Crespo, L. Spessato, S.A.R. Melo, A.F. Martins, A.L. Cazetta and V.C. Almeida, J. Environ. Chem. Eng., 9, 104753 (2021); https://doi.org/10.1016/j.jece.2020.104753
W. Sangchay, J. Nanotechnol., 2017, 7902930 (2017); https://doi.org/10.1155/2017/7902930
A. Aleboyeh, M.B. Kasiri, M.E. Olya and H. Aleboyeh, Dyes Pigments, 77, 288 (2008); https://doi.org/10.1016/j.dyepig.2007.05.014
W. Wang, M.O. Tadé and Z. Shao, Chem. Soc. Rev., 44, 5371 (2015); https://doi.org/10.1039/C5CS00113G
C. Chen, W. Ma and J. Zhao, Chem. Soc. Rev., 39, 4206 (2010); https://doi.org/10.1039/b921692h
J. Zhu, S. Wei, H. Gu, S.B. Rapole, Q. Wang, N. Haldolaarachchige, Z. Luo, D.P. Young and Z. Guo, Environ. Sci. Technol., 46, 977 (2012); https://doi.org/10.1021/es2014133
L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu and G. Cai, Dalton Trans., 42, 8606 (2013); https://doi.org/10.1039/c3dt00115f
H. Li, J. Liu, W. Hou, N. Du, R. Zhang and X. Tao, Appl. Catal. B, 160-161, 89 (2014); https://doi.org/10.1016/j.apcatb.2014.05.019
S. Kamal, S. Balu, S. Palanisamy, K. Uma, V. Velusamy and T.C.K. Yang, Results in Physics, 12, 1238 (2019); https://doi.org/10.1016/j.rinp.2019.01.004
W. Guo, K. Fan, J. Zhang and C. Xu, Appl. Surf. Sci., 447, 125 (2018); https://doi.org/10.1016/j.apsusc.2018.03.080
S.G. Kumar and L.G. Devi, J. Phys. Chem. A, 115, 13211 (2011); https://doi.org/10.1021/jp204364a
S. Zhang, P. Gu, R. Ma, C. Luo, T. Wen, G. Zhao, W. Cheng and X. Wang, Catal. Today, 335, 65 (2019); https://doi.org/10.1016/j.cattod.2018.09.013
B. Rhimi, C. Wang and D. Bahnemann, J. Phys. Energy, 2, 042003 (2020); https://doi.org/10.1088/2515-7655/abb782
Y. Fu, T. Huang, L. Zhang, J. Zhu and X. Wang, Nanoscale, 7, 13723 (2015); https://doi.org/10.1039/C5NR03260A
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen and M. Antonietti, Nat. Mater., 8, 76 (2009); https://doi.org/10.1038/nmat2317
B. Zhu, P. Xia, Y. Li, W. Ho and J. Yu, Appl. Surf. Sci., 391, 175 (2017); https://doi.org/10.1016/j.apsusc.2016.07.104
L. Yang, J. Tian, J. Meng, R. Zhao, C. Li, J. Ma and T. Jin, Molecules, 23, 562 (2018); https://doi.org/10.3390/molecules23030562
L. Liu, Y. Qi, J. Hu, Y. Liang and W. Cui, Appl. Surf. Sci., 351, 1146 (2015); https://doi.org/10.1016/j.apsusc.2015.06.119
M. Rajabi, K. Mahanpoor and O. Moradi, Composites B Eng., 167, 544 (2019); https://doi.org/10.1016/j.compositesb.2019.03.030
Y. Wang, X. Wang and M. Antonietti, Angew. Chem. Int. Ed., 51, 68 (2012); https://doi.org/10.1002/anie.201101182
Y. Yao, Y. Cai, F. Lu, J. Qin, F. Wei, C. Xu and S. Wang, Ind. Eng. Chem. Res., 53, 17294 (2014); https://doi.org/10.1021/ie503437z
P. Makula, M. Pacia and W. Macyk, J. Phys. Chem. Lett., 9, 6814 (2018); https://doi.org/10.1021/acs.jpclett.8b02892
K. Vignesh, M. Rajarajan and A. Suganthi, J. Ind. Eng. Chem., 20, 3826 (2014); https://doi.org/10.1016/j.jiec.2013.12.086
K. Vignesh, A. Suganthi, B.-K. Min, M. Rajarajan and M. Kang, RSC Adv., 5, 576 (2015); https://doi.org/10.1039/C4RA14291H
K. Vignesh, R. Hariharan, M. Rajarajan and A. Suganthi, Mater. Sci. Semiconductor Process., 16, 1521 (2013); https://doi.org/10.1016/j.mssp.2013.04.025
P. Bansal and D. Sud, Desalination, 267, 244 (2011); https://doi.org/10.1016/j.desal.2010.09.034