Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Highly Efficient Synthesis of Glucose Fatty Acid Esters Catalyzed by High Performance Lipase Preparations
Corresponding Author(s) : Benu Arora
Asian Journal of Chemistry,
Vol. 33 No. 10 (2021): Vol 33 Issue 10, 2021
Abstract
Glucose fatty acid esters were synthesized using cross-linked enzyme aggregates (CLEAs), protein coated microcrystals (PCMCs) and cross-linked protein coated microcrystals (CLPCMCs) of Candida antarctica lipase B (CALB) as biocatalyst designs in single and mixed solvent systems. Up to 90% conversion and more than 99% regioselectivity were obtained using vinyl acetate as the acyl donor in a solvent system composed of 2-methyl-2-butanol (2M2B) and 30% (v/v) DMSO, with CALB CLEAs within 45 min. Similar results were obtained with CALB CLPCMCs as the biocatalyst under the same reaction conditions. This approach was then extended to the synthesis of glucose esters with higher acyl chain length. The synthetic strategy used in this work can potentially be extended for the fast and regioselective esterification/transesterification of other sugars as well.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.W. Chang and J.F. Shaw, N. Biotechnol., 26, 109 (2009); https://doi.org/10.1016/j.nbt.2009.07.003
- A.M. Gumel, M.S.M. Annuar, T. Heidelberg and Y. Chisti, Process Biochem., 46, 2079 (2011); https://doi.org/10.1016/j.procbio.2011.07.021
- N.S. Neta, J.A. Teixeira and L.R. Rodrigues, Crit. Rev. Food Sci. Nutr., 55, 595 (2015); https://doi.org/10.1080/10408398.2012.667461
- G.J. Puterka, W. Farone, T. Palmer and A. Barrington, J. Econ. Entomol., 96, 636 (2003); https://doi.org/10.1093/jee/96.3.636
- M. Pacwa-Plociniczak, G.A. Plaza, Z. Piotrowska-Seget and S.S. Cameotra, Int. J. Mol. Sci., 12, 633 (2011); https://doi.org/10.3390/ijms12010633
- J. Staron, J.M. Dabrowski, E. Cichon and M. Guzik, Crit. Rev. Biotechnol., 38, 245 (2017). https://doi.org/10.1080/07388551.2017.1332571
- D.R. Perinelli, S. Lucarini, L. Fagioli, R. Campana, D. Vllasaliu, A. Duranti and L. Casettari, Eur. J. Pharm. Biopharm., 124, 55 (2018); https://doi.org/10.1016/j.ejpb.2017.12.008
- J.A. Arcos, M. Bernabe and C. Otero, Biotechnol. Bioeng., 57, 505 (1998); https://doi.org/10.1002/(SICI)1097-0290(19980305)57:5<505::AIDBIT1>3.0.CO;2-K
- N.R. Khan and V.K. Rathod, Process Biochem., 50, 1793 (2015); https://doi.org/10.1016/j.procbio.2015.07.014
- P. Inprakhon, N. Wongthongdee, T. Amornsakchai, T. Pongtharankul, P. Sunintaboon, L.O. Wiemann, A. Durand and V. Sieber, J. Biotechnol., 259, 182 (2017); https://doi.org/10.1016/j.jbiotec.2017.07.021
- K.-H. Zhao, Y.-Z. Cai, X.-S. Lin, J. Xiong, P. J. Halling and Z. Yang, Molecules, 21, 1294 (2016); https://doi.org/10.3390/molecules21101294
- E. Abdulmalek, N.F. Hamidon and M.B. Abdul Rahman, J. Mol. Catal. B: Enzym., 132, 1 (2016); https://doi.org/10.1016/j.molcatb.2016.06.010
- V.M. Pappalardo, C.G. Boeriu, F. Zaccheriaa and N. Ravasio, Mol. Catal., 433, 383 (2017); https://doi.org/10.1016/j.mcat.2017.02.029
- D.W. Shin, N.L. Mai, S.-W. Bae and Y.- M. Koo, Enzyme Microb. Technol., 126, 18 (2019). https://doi.org/10.1016/j.enzmictec.2019.03.004
- A. Zaks and A.M. Klibanov, Proc. Natl. Acad. Sci. USA, 82, 3192 (1985); https://doi.org/10.1073/pnas.82.10.3192
- E.P. Hudson, R.K. Eppler and D.S. Clark, Curr. Opin. Biotechnol., 16, 637 (2005); https://doi.org/10.1016/j.copbio.2005.10.004
- S. Riva, J. Chopineau, A.P.G. Kieboom and A.M. Klibanov, J. Am. Chem. Soc., 110, 584 (1988); https://doi.org/10.1021/ja00210a045
- L. Ferreira, M.A. Ramos, M.H. Gil and J.S. Dordick, Biotechnol. Prog., 18, 986 (2002); https://doi.org/10.1021/bp0255457
- N.R. Pedersen, R. Wimmer, R. Matthiesen, L.H. Pedersen and A. Gessesse, Tetrahedron Asymm., 14, 667 (2003); https://doi.org/10.1016/S0957-4166(03)00086-7
- S. Ritthitham, R. Wimmer, A. Stensballe and L.H. Pedersen, J. Mol. Catal. B Enzym., 59, 266 (2009); https://doi.org/10.1016/j.molcatb.2008.09.008
- Y.-F. Wang, J.J. Lalonde, M. Momongan, D.E. Bergbreiter and C.H. Wong, J. Am. Chem. Soc., 110, 7200 (1988); https://doi.org/10.1021/ja00229a041
- A.B. Majumder and M.N. Gupta, Bioresour. Technol., 101, 2877 (2010); https://doi.org/10.1016/j.biortech.2009.09.088
- A. Ghanem, Tetrahedron, 63, 1721 (2007); https://doi.org/10.1016/j.tet.2006.09.110
- E. Castillo, F. Pezzotti, A. Navarro and L. Lopez-Munguia, J. Biotechnol., 102, 251 (2003); https://doi.org/10.1016/S0168-1656(03)00050-6
- M. Ferrer, J. Soliveri, F.J. Plou, N. Lopez-Cortes, M. Christensen, D. ReyesDuarte, J.L. Copa-Patiño and A. Ballesteros, Enzyme Microb. Technol., 36, 391 (2005); https://doi.org/10.1016/j.enzmictec.2004.02.009
- D. Reyes-Duarte, N. Lopez-Cortes, M. Ferrer, F.J. Plou and A. Ballesteros, Biocatal. Biotransform., 23, 19 (2005); https://doi.org/10.1080/10242420500071763
- X. Yang, P. Zheng, Y. Ni and Z. Sun, J. Biotechnol., 161, 27 (2012); https://doi.org/10.1016/j.jbiotec.2012.05.014
- G. Ljunger, P. Adlercreutz and B. Mattiasson, Biotechnol. Lett., 16, 1167 (1994); https://doi.org/10.1007/BF01020845
- L. Cao, A. Fischer, U.T. Bornscheuer and R.D. Schmid, Biocatal. Biotransform., 14, 269 (1996); https://doi.org/10.3109/10242429609110280
- S. Park and R.J. Kazlauskas, J. Org. Chem., 66, 8395 (2001); https://doi.org/10.1021/jo015761e
- F. Ganske and U.T. Bornscheuer, Org. Lett., 7, 3097 (2005); https://doi.org/10.1021/ol0511169
- S.H. Lee, D.T. Dang, S.H. Ha, W.-J. Chang and Y.-M. Koo, Biotechnol. Bioeng., 99, 1 (2008); https://doi.org/10.1002/bit.21534
- A.M. Sebatini, M. Jain, P. Radha, S. Kiruthika and K. Tamilarasan, 3 Biotech., 6, 184 (2016). https://doi.org/10.1007/s13205-016-0501-z
- R.T. Otto, U.T. Bornscheuer, C. Syldatk and R.D. Schmid, J. Biotechnol., 64, 231 (1998); https://doi.org/10.1016/S0168-1656(98)00125-4
- P.Y. Goueth, P. Gogalis, R. Bikanga, P. Gode, D. Postel, G. Ronco and P. Villa, J. Carbohydr. Chem., 13, 249 (1994); https://doi.org/10.1080/07328309408009191
- M. Kreiner, M.C. Parker and B.D. Moore, Chem. Commun., 1096 (2001); https://doi.org/10.1039/b100722j
- R. Sheldon, Biochem. Soc. Trans., 35, 1583 (2007); https://doi.org/10.1042/BST0351583
- S. Shah, A. Sharma and M.N. Gupta, Biocatal. Biotransform., 26, 266 (2008); https://doi.org/10.1080/10242420801897429
- M. Kapoor and M.N. Gupta, Process Biochem., 47, 503 (2012); https://doi.org/10.1016/j.procbio.2011.12.009
- A.B. Majumder, K. Mondal, T.P. Singh and M.N. Gupta, Biocatal. Biotransform., 26, 235 (2008); https://doi.org/10.1080/10242420701685601
- R. Schoevaart, M.W. Wolbers, M. Golubovic, M. Ottens, A.P.G. Kieboom, F. van Rantwijk, L.A.M. van der Wielen and R.A. Sheldon, Biotechnol. Bioeng., 87, 754 (2004); https://doi.org/10.1002/bit.20184
- K. Solanki, M.N. Gupta and P.J. Halling, Bioresour. Technol., 115, 147 (2012); https://doi.org/10.1016/j.biortech.2011.12.066
- C.C. Sweeley, R. Bentley, M. Makita and W.W. Wells, J. Am. Chem. Soc., 85, 2497 (1963); https://doi.org/10.1021/ja00899a032
- K. Yoshimoto, Y. Itatani and Y. Tsuda, Chem. Pharm. Bull., 28, 2065 (1980); https://doi.org/10.1248/cpb.28.2065
- C. Laane, S. Boeren, K. Vos and C. Veeger, Biotech. Bioeng., 30, 81 (1987); https://doi.org/10.1002/bit.260300112
- P. Degn and W. Zimmermann, Biotechnol. Bioeng., 74, 483 (2001); https://doi.org/10.1002/bit.1139
- Arora Asian J. Chem.
- N. Sanders, Eds.: N.B. Jones and T.R. Nolt, Food Legislation and the Scope for Increased Use of Near-critical Fluid Extraction Operations in the Food, Flavouring and Pharmaceutical Industries, In: Extraction of Natural Products using Near Critical Solvents, Chapman & Hall: London, pp. 34-38 (1993).
- P. Degn, L.H. Pedersen, J.Q. Duus and W. Zimmermann, Biotechnol. Lett., 21, 275 (1999); https://doi.org/10.1023/A:1005439801354
- M.V. Flores, K. Naraghi, J.-M. Engasser and P.J. Halling, Biotechnol. Bioeng., 78, 815 (2002); https://doi.org/10.1002/bit.10263
- K. Ren and B.P. Lamsal, Food Chem., 214, 556 (2017); https://doi.org/10.1016/j.foodchem.2016.07.031
- S. Ritthitham, R. Wimmer and L.H. Pedersen, Process Biochem., 46, 931 (2011); https://doi.org/10.1016/j.procbio.2011.01.004
- R. Pelagalli, I. Chiarotto, M. Feroci and S. Vecchio, Green Chem., 14, 2251 (2012); https://doi.org/10.1039/c2gc35485c
- D. An and Z. Ye, J. Dispersion Sci. Technol., 38, 1181 (2017); https://doi.org/10.1080/01932691.2016.1170609
- X.-S. Lin, K.-H. Zhao, Q.-L. Zhou, K.-Q. Xie, P.J. Halling and Z. Yang, Bioresour. Bioprocess., 3, 2 (2016); https://doi.org/10.1186/s40643-015-0080-6
References
S.W. Chang and J.F. Shaw, N. Biotechnol., 26, 109 (2009); https://doi.org/10.1016/j.nbt.2009.07.003
A.M. Gumel, M.S.M. Annuar, T. Heidelberg and Y. Chisti, Process Biochem., 46, 2079 (2011); https://doi.org/10.1016/j.procbio.2011.07.021
N.S. Neta, J.A. Teixeira and L.R. Rodrigues, Crit. Rev. Food Sci. Nutr., 55, 595 (2015); https://doi.org/10.1080/10408398.2012.667461
G.J. Puterka, W. Farone, T. Palmer and A. Barrington, J. Econ. Entomol., 96, 636 (2003); https://doi.org/10.1093/jee/96.3.636
M. Pacwa-Plociniczak, G.A. Plaza, Z. Piotrowska-Seget and S.S. Cameotra, Int. J. Mol. Sci., 12, 633 (2011); https://doi.org/10.3390/ijms12010633
J. Staron, J.M. Dabrowski, E. Cichon and M. Guzik, Crit. Rev. Biotechnol., 38, 245 (2017). https://doi.org/10.1080/07388551.2017.1332571
D.R. Perinelli, S. Lucarini, L. Fagioli, R. Campana, D. Vllasaliu, A. Duranti and L. Casettari, Eur. J. Pharm. Biopharm., 124, 55 (2018); https://doi.org/10.1016/j.ejpb.2017.12.008
J.A. Arcos, M. Bernabe and C. Otero, Biotechnol. Bioeng., 57, 505 (1998); https://doi.org/10.1002/(SICI)1097-0290(19980305)57:5<505::AIDBIT1>3.0.CO;2-K
N.R. Khan and V.K. Rathod, Process Biochem., 50, 1793 (2015); https://doi.org/10.1016/j.procbio.2015.07.014
P. Inprakhon, N. Wongthongdee, T. Amornsakchai, T. Pongtharankul, P. Sunintaboon, L.O. Wiemann, A. Durand and V. Sieber, J. Biotechnol., 259, 182 (2017); https://doi.org/10.1016/j.jbiotec.2017.07.021
K.-H. Zhao, Y.-Z. Cai, X.-S. Lin, J. Xiong, P. J. Halling and Z. Yang, Molecules, 21, 1294 (2016); https://doi.org/10.3390/molecules21101294
E. Abdulmalek, N.F. Hamidon and M.B. Abdul Rahman, J. Mol. Catal. B: Enzym., 132, 1 (2016); https://doi.org/10.1016/j.molcatb.2016.06.010
V.M. Pappalardo, C.G. Boeriu, F. Zaccheriaa and N. Ravasio, Mol. Catal., 433, 383 (2017); https://doi.org/10.1016/j.mcat.2017.02.029
D.W. Shin, N.L. Mai, S.-W. Bae and Y.- M. Koo, Enzyme Microb. Technol., 126, 18 (2019). https://doi.org/10.1016/j.enzmictec.2019.03.004
A. Zaks and A.M. Klibanov, Proc. Natl. Acad. Sci. USA, 82, 3192 (1985); https://doi.org/10.1073/pnas.82.10.3192
E.P. Hudson, R.K. Eppler and D.S. Clark, Curr. Opin. Biotechnol., 16, 637 (2005); https://doi.org/10.1016/j.copbio.2005.10.004
S. Riva, J. Chopineau, A.P.G. Kieboom and A.M. Klibanov, J. Am. Chem. Soc., 110, 584 (1988); https://doi.org/10.1021/ja00210a045
L. Ferreira, M.A. Ramos, M.H. Gil and J.S. Dordick, Biotechnol. Prog., 18, 986 (2002); https://doi.org/10.1021/bp0255457
N.R. Pedersen, R. Wimmer, R. Matthiesen, L.H. Pedersen and A. Gessesse, Tetrahedron Asymm., 14, 667 (2003); https://doi.org/10.1016/S0957-4166(03)00086-7
S. Ritthitham, R. Wimmer, A. Stensballe and L.H. Pedersen, J. Mol. Catal. B Enzym., 59, 266 (2009); https://doi.org/10.1016/j.molcatb.2008.09.008
Y.-F. Wang, J.J. Lalonde, M. Momongan, D.E. Bergbreiter and C.H. Wong, J. Am. Chem. Soc., 110, 7200 (1988); https://doi.org/10.1021/ja00229a041
A.B. Majumder and M.N. Gupta, Bioresour. Technol., 101, 2877 (2010); https://doi.org/10.1016/j.biortech.2009.09.088
A. Ghanem, Tetrahedron, 63, 1721 (2007); https://doi.org/10.1016/j.tet.2006.09.110
E. Castillo, F. Pezzotti, A. Navarro and L. Lopez-Munguia, J. Biotechnol., 102, 251 (2003); https://doi.org/10.1016/S0168-1656(03)00050-6
M. Ferrer, J. Soliveri, F.J. Plou, N. Lopez-Cortes, M. Christensen, D. ReyesDuarte, J.L. Copa-Patiño and A. Ballesteros, Enzyme Microb. Technol., 36, 391 (2005); https://doi.org/10.1016/j.enzmictec.2004.02.009
D. Reyes-Duarte, N. Lopez-Cortes, M. Ferrer, F.J. Plou and A. Ballesteros, Biocatal. Biotransform., 23, 19 (2005); https://doi.org/10.1080/10242420500071763
X. Yang, P. Zheng, Y. Ni and Z. Sun, J. Biotechnol., 161, 27 (2012); https://doi.org/10.1016/j.jbiotec.2012.05.014
G. Ljunger, P. Adlercreutz and B. Mattiasson, Biotechnol. Lett., 16, 1167 (1994); https://doi.org/10.1007/BF01020845
L. Cao, A. Fischer, U.T. Bornscheuer and R.D. Schmid, Biocatal. Biotransform., 14, 269 (1996); https://doi.org/10.3109/10242429609110280
S. Park and R.J. Kazlauskas, J. Org. Chem., 66, 8395 (2001); https://doi.org/10.1021/jo015761e
F. Ganske and U.T. Bornscheuer, Org. Lett., 7, 3097 (2005); https://doi.org/10.1021/ol0511169
S.H. Lee, D.T. Dang, S.H. Ha, W.-J. Chang and Y.-M. Koo, Biotechnol. Bioeng., 99, 1 (2008); https://doi.org/10.1002/bit.21534
A.M. Sebatini, M. Jain, P. Radha, S. Kiruthika and K. Tamilarasan, 3 Biotech., 6, 184 (2016). https://doi.org/10.1007/s13205-016-0501-z
R.T. Otto, U.T. Bornscheuer, C. Syldatk and R.D. Schmid, J. Biotechnol., 64, 231 (1998); https://doi.org/10.1016/S0168-1656(98)00125-4
P.Y. Goueth, P. Gogalis, R. Bikanga, P. Gode, D. Postel, G. Ronco and P. Villa, J. Carbohydr. Chem., 13, 249 (1994); https://doi.org/10.1080/07328309408009191
M. Kreiner, M.C. Parker and B.D. Moore, Chem. Commun., 1096 (2001); https://doi.org/10.1039/b100722j
R. Sheldon, Biochem. Soc. Trans., 35, 1583 (2007); https://doi.org/10.1042/BST0351583
S. Shah, A. Sharma and M.N. Gupta, Biocatal. Biotransform., 26, 266 (2008); https://doi.org/10.1080/10242420801897429
M. Kapoor and M.N. Gupta, Process Biochem., 47, 503 (2012); https://doi.org/10.1016/j.procbio.2011.12.009
A.B. Majumder, K. Mondal, T.P. Singh and M.N. Gupta, Biocatal. Biotransform., 26, 235 (2008); https://doi.org/10.1080/10242420701685601
R. Schoevaart, M.W. Wolbers, M. Golubovic, M. Ottens, A.P.G. Kieboom, F. van Rantwijk, L.A.M. van der Wielen and R.A. Sheldon, Biotechnol. Bioeng., 87, 754 (2004); https://doi.org/10.1002/bit.20184
K. Solanki, M.N. Gupta and P.J. Halling, Bioresour. Technol., 115, 147 (2012); https://doi.org/10.1016/j.biortech.2011.12.066
C.C. Sweeley, R. Bentley, M. Makita and W.W. Wells, J. Am. Chem. Soc., 85, 2497 (1963); https://doi.org/10.1021/ja00899a032
K. Yoshimoto, Y. Itatani and Y. Tsuda, Chem. Pharm. Bull., 28, 2065 (1980); https://doi.org/10.1248/cpb.28.2065
C. Laane, S. Boeren, K. Vos and C. Veeger, Biotech. Bioeng., 30, 81 (1987); https://doi.org/10.1002/bit.260300112
P. Degn and W. Zimmermann, Biotechnol. Bioeng., 74, 483 (2001); https://doi.org/10.1002/bit.1139
Arora Asian J. Chem.
N. Sanders, Eds.: N.B. Jones and T.R. Nolt, Food Legislation and the Scope for Increased Use of Near-critical Fluid Extraction Operations in the Food, Flavouring and Pharmaceutical Industries, In: Extraction of Natural Products using Near Critical Solvents, Chapman & Hall: London, pp. 34-38 (1993).
P. Degn, L.H. Pedersen, J.Q. Duus and W. Zimmermann, Biotechnol. Lett., 21, 275 (1999); https://doi.org/10.1023/A:1005439801354
M.V. Flores, K. Naraghi, J.-M. Engasser and P.J. Halling, Biotechnol. Bioeng., 78, 815 (2002); https://doi.org/10.1002/bit.10263
K. Ren and B.P. Lamsal, Food Chem., 214, 556 (2017); https://doi.org/10.1016/j.foodchem.2016.07.031
S. Ritthitham, R. Wimmer and L.H. Pedersen, Process Biochem., 46, 931 (2011); https://doi.org/10.1016/j.procbio.2011.01.004
R. Pelagalli, I. Chiarotto, M. Feroci and S. Vecchio, Green Chem., 14, 2251 (2012); https://doi.org/10.1039/c2gc35485c
D. An and Z. Ye, J. Dispersion Sci. Technol., 38, 1181 (2017); https://doi.org/10.1080/01932691.2016.1170609
X.-S. Lin, K.-H. Zhao, Q.-L. Zhou, K.-Q. Xie, P.J. Halling and Z. Yang, Bioresour. Bioprocess., 3, 2 (2016); https://doi.org/10.1186/s40643-015-0080-6