Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Role of Al(OH)3 Nanocatalyst on Hydrogen Generation from Al/H2O Reaction Medium
Corresponding Author(s) : M. Vennila
Asian Journal of Chemistry,
Vol. 33 No. 10 (2021): Vol 33 Issue 10, 2021
Abstract
Aluminum hydroxide nanoparticles were synthesized using sodium aluminate (NaAlO2) solution and varying amounts of ethanol and methanol under different reaction conditions. The synthesized nanoparticles were characterized using XRD, FESEM and FTIR techniques. The synthesized aluminium hydroxide nanoparticles employed as a catalyst to generate hydrogen from Al/H2O reaction medium. The maximum hydrogen generation with 100% efficiency achieved within 1.50 h at 1:1:200 ratio of Al:Al(OH)3:H2O. This mode of hydrogen generation was collective, non-hazardous, non-corrosive and very promising alternate fuel for energy system.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Gao, F. Ji, D. Cheng, C. Yin, J. Niu and J. Brnic, Energies, 14, 1433 (2021); https://doi.org/10.3390/en14051433
- S. Prabu and H.-W. Wang, Catal. Sci. Technol., 11, 4636 (2021); https://doi.org/10.1039/D1CY00534K
- H.Z. Wang, D.Y.C. Leung, M.K.H. Leung and M. Ni, Renew Sustain. Energy Rev., 13, 845 (2009); https://doi.org/10.1016/j.rser.2008.02.009
- H.S. Yoo, H.Y. Ryu, S.S. Cho, M.H. Han, K.S. Bae and J.H. Lee, Int. J. Hydrogen Energy, 36, 15111 (2011); https://doi.org/10.1016/j.ijhydene.2011.08.061
- L. Soler, J. Macanas, M. Munoz and J. Casado, J. Power Sources, 169, 144 (2007); https://doi.org/10.1016/j.jpowsour.2007.01.080
- L. Soler, A.M. Candela, J. Macanas, M. Munoz and J. Casado, Int. J. Hydrogen Energy, 35, 1038 (2010); https://doi.org/10.1016/j.ijhydene.2009.11.065
- G.A. Risha, Y. Huang, R.A. Yetter, V. Yang, S.F. Son and B.C. Tappan, AIAA Paper, 1154 (2006).
- T.F. Miller and J.D. Herr, AIAA Paper, 3788 (2004).
- A. Ingenito and C. Bruno, J. Propuls. Power, 20, 1056 (2004); https://doi.org/10.2514/1.5132
- G. Thomas and C. San Ramon, Overview of storage development DOE Hydrogen Program, Sandia National Laboratories; p. 9 (2000).
- O.V. Kravchenko, K.N. Semenenko, B.M. Bulychev and K.B. Kalmykov, J. Alloys Compd., 397, 58 (2005); https://doi.org/10.1016/j.jallcom.2004.11.065
- A. V. Ilyukhina, O.V. Kravchenko, B.M. Bulychev and E.I. Shkolnikov, Int. J. Hydrogen Energy, 35, 1905 (2010); https://doi.org/10.1016/j.ijhydene.2009.12.118
- J.T. Ziebarth, J.M. Woodall, R.A. Kramer and G. Choi, Int. J. Hydrogen Energy, 36, 5271 (2011); https://doi.org/10.1016/j.ijhydene.2011.01.127
- X.Y. Chen, Z.W. Zhao, X.H. Liu, M.M. Hao, A.L. Chen and Z.Y. Tang, J. Power Sources, 254, 345 (2014); https://doi.org/10.1016/j.jpowsour.2013.12.113
- X.Y. Chen, Z.W. Zhao, M.M. Hao and D.Z. Wang, J. Power Sources, 222, 188 (2013); https://doi.org/10.1016/j.jpowsour.2012.08.078
- Y.A. Liu, X.H. Wang, H.Z. Liu, Z.H. Dong, S.Q. Li, H.W. Ge and M. Yan, Energy, 89, 907 (2015); https://doi.org/10.1016/j.energy.2015.06.043
- H.T. Teng, T.Y. Lee, Y.K. Chen, H.W. Wang and G. Cao, J. Power Sources, 219, 16 (2012); https://doi.org/10.1016/j.jpowsour.2012.06.077
- Y.K. Chen, H.T. Teng, T.Y. Lee and H.W. Wang, Int. J. Energy Environ. Eng., 5, 87 (2014); https://doi.org/10.1007/s40095-014-0087-3
- H.W. Wang and M.S. Chin, Int. J. Chem. Eng. Appl., 6, 146 (2015); https://doi.org/10.7763/IJCEA.2015.V6.470
- L. Soler, A.M. Candela, J. Macanas, M. Munoz and J. Casado, Int. J. Hydrogen Energy, 34, 8511 (2009); https://doi.org/10.1016/j.ijhydene.2009.08.008
References
Z. Gao, F. Ji, D. Cheng, C. Yin, J. Niu and J. Brnic, Energies, 14, 1433 (2021); https://doi.org/10.3390/en14051433
S. Prabu and H.-W. Wang, Catal. Sci. Technol., 11, 4636 (2021); https://doi.org/10.1039/D1CY00534K
H.Z. Wang, D.Y.C. Leung, M.K.H. Leung and M. Ni, Renew Sustain. Energy Rev., 13, 845 (2009); https://doi.org/10.1016/j.rser.2008.02.009
H.S. Yoo, H.Y. Ryu, S.S. Cho, M.H. Han, K.S. Bae and J.H. Lee, Int. J. Hydrogen Energy, 36, 15111 (2011); https://doi.org/10.1016/j.ijhydene.2011.08.061
L. Soler, J. Macanas, M. Munoz and J. Casado, J. Power Sources, 169, 144 (2007); https://doi.org/10.1016/j.jpowsour.2007.01.080
L. Soler, A.M. Candela, J. Macanas, M. Munoz and J. Casado, Int. J. Hydrogen Energy, 35, 1038 (2010); https://doi.org/10.1016/j.ijhydene.2009.11.065
G.A. Risha, Y. Huang, R.A. Yetter, V. Yang, S.F. Son and B.C. Tappan, AIAA Paper, 1154 (2006).
T.F. Miller and J.D. Herr, AIAA Paper, 3788 (2004).
A. Ingenito and C. Bruno, J. Propuls. Power, 20, 1056 (2004); https://doi.org/10.2514/1.5132
G. Thomas and C. San Ramon, Overview of storage development DOE Hydrogen Program, Sandia National Laboratories; p. 9 (2000).
O.V. Kravchenko, K.N. Semenenko, B.M. Bulychev and K.B. Kalmykov, J. Alloys Compd., 397, 58 (2005); https://doi.org/10.1016/j.jallcom.2004.11.065
A. V. Ilyukhina, O.V. Kravchenko, B.M. Bulychev and E.I. Shkolnikov, Int. J. Hydrogen Energy, 35, 1905 (2010); https://doi.org/10.1016/j.ijhydene.2009.12.118
J.T. Ziebarth, J.M. Woodall, R.A. Kramer and G. Choi, Int. J. Hydrogen Energy, 36, 5271 (2011); https://doi.org/10.1016/j.ijhydene.2011.01.127
X.Y. Chen, Z.W. Zhao, X.H. Liu, M.M. Hao, A.L. Chen and Z.Y. Tang, J. Power Sources, 254, 345 (2014); https://doi.org/10.1016/j.jpowsour.2013.12.113
X.Y. Chen, Z.W. Zhao, M.M. Hao and D.Z. Wang, J. Power Sources, 222, 188 (2013); https://doi.org/10.1016/j.jpowsour.2012.08.078
Y.A. Liu, X.H. Wang, H.Z. Liu, Z.H. Dong, S.Q. Li, H.W. Ge and M. Yan, Energy, 89, 907 (2015); https://doi.org/10.1016/j.energy.2015.06.043
H.T. Teng, T.Y. Lee, Y.K. Chen, H.W. Wang and G. Cao, J. Power Sources, 219, 16 (2012); https://doi.org/10.1016/j.jpowsour.2012.06.077
Y.K. Chen, H.T. Teng, T.Y. Lee and H.W. Wang, Int. J. Energy Environ. Eng., 5, 87 (2014); https://doi.org/10.1007/s40095-014-0087-3
H.W. Wang and M.S. Chin, Int. J. Chem. Eng. Appl., 6, 146 (2015); https://doi.org/10.7763/IJCEA.2015.V6.470
L. Soler, A.M. Candela, J. Macanas, M. Munoz and J. Casado, Int. J. Hydrogen Energy, 34, 8511 (2009); https://doi.org/10.1016/j.ijhydene.2009.08.008