Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Impact of Aluminium on ZnO Thin Films for Antimicrobial Activity
Corresponding Author(s) : BA. Anandh
Asian Journal of Chemistry,
Vol. 33 No. 10 (2021): Vol 33 Issue 10, 2021
Abstract
Thin films of pure zinc oxide (ZnO) and aluminium (Al) doped ZnO were deposited by two step SILAR technique. Pure and Al (1%, 3%, 5%) doped ZnO thin film’s structural, morphology and optical properties were analyzed. Diffraction peaks of all the samples were indexed to hexagonal Wurtizite structure. The crystallite size, lattice parameters, dislocation density and microstrain were calculated for the prepared thin films. Morphology study using FESEM shows spherical shaped structure of pure ZnO and hexagonal faced rod like structure for Al doped ZnO thin films. The UV-vis absorption spectrum for the thin films was also studied. There is decrease in bandgap as the Al doping ratio increases from 1% to 5%. Photoluminescence studies confirmed that oxygen ion vacancy and interstitial Zn+ ion were present. The maximum zone of inhibition was studied against the Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria by agar diffusion method. Significant antimicrobial results were seen in pure and Al doped ZnO. Aluminium doped ZnO shows more antimicrobial activity over pure ZnO.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O.O. Abegunde, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi and A.U. Ude, AIMS Mater. Sci., 6, 174 (2019); https://doi.org/10.3934/matersci.2019.2.174
- F. Dabir, H. Esfahani, F. Bakhtiargonbadi and Z. Khodadadi, J. SolGel Sci. Technol., 96, 529 (2020); https://doi.org/10.1007/s10971-020-05269-0
- J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan and M. Shimizu, J. Chem. Eng. of Jpn, 29, 627 (1996); https://doi.org/10.1252/jcej.29.627
- A.G. Cuevas, K. Balangcod, T. Balangcod and A. Jasmin, Procedia Eng., 68, 537 (2013); https://doi.org/10.1016/j.proeng.2013.12.218
- A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan and D. Mohamad, Nanomicro Lett., 7, 219 (2015); https://doi.org/10.1007/s40820-015-0040-x
- M.L. Weththimuni, D. Capsoni, M. Malagodi and M. Licchelli, J. Nanomater., 2019, 6715756 (2019); https://doi.org/10.1155/2019/6715756
- S.S. Shinde, A.P. Korade, C.H. Bhosale and K.Y. Rajpure, J. Alloys Compd., 551, 688 (2013); https://doi.org/10.1016/j.jallcom.2012.11.057
- R. Wahab, A. Mishra, S. Yun, I.H. Hwang, A.A. Al-Khedhairy, Y.-S. Kim, J. Mussarat and H.-S. Shin, Biomass Bioenergy, 39, 227 (2012); https://doi.org/10.1016/j.biombioe.2012.01.005
- J. Panigrahi, B. Behera, I. Mohanty, U. Subudhi, B.B. Nayak and B.S. Acharya, Appl. Surf. Sci., 258, 304 (2011); https://doi.org/10.1016/j.apsusc.2011.08.056
- P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, K. Srijan, J. Wudtipan and S. Kaewtaro, Powder Technol., 212, 432 (2011); https://doi.org/10.1016/j.powtec.2011.06.028
- F.K, Mugwang’a, P.K. Karimi, W.K. Njoroge and O. Omayio, J. Fund. Renew. Energy Appl., 5, 170 (2015).
- S. Marouf, A. Beniaiche, H. Guessas and A. Azizi, Mater. Res., 20, 88 (2016); https://doi.org/10.1590/1980-5373-mr-2015-0751
- M.R. Alfaro Cruz, O. Ceballos-Sanchez, E. Luévano-Hipólito and L.M. Torres-Martínez, Int. J. Hydrogen Energy, 43, 10301 (2018); https://doi.org/10.1016/j.ijhydene.2018.04.054
- A. Kathalingam, N. Ambika, M.R. Kim, J. Elanchezhiyan, Y.S. Chae and J.K. Rhee, Mater. Sci. Pol., 28, 513 (2010).
- N. Lehraki, M.S. Aida, S. Abed, N. Attaf, A. Attaf and M. Poulain, Curr. Appl. Phys., 12, 1283 (2012); https://doi.org/10.1016/j.cap.2012.03.012
- G.G. Valle, P. Hammer, S.H. Pulcinelli and C.V. Santilli, J. Eur. Ceram. Soc., 24, 1009 (2004); https://doi.org/10.1016/S0955-2219(03)00597-1
- A.C. Nwanya, P.R. Deshmukh, R.U. Osuji, M. Maaza, C.D. Lokhande and F.I. Ezema, Sens. Actuators B Chem., 206, 671 (2015); https://doi.org/10.1016/j.snb.2014.09.111
- T. Schuler and M.A. Aegerter, Thin Solid Films, 351, 125 (1999); https://doi.org/10.1016/S0040-6090(99)00211-4
- S. Bandyopadhyay, G.K. Paul, R. Roy, S.K. Sen and S. Sen, Mater. Chem. Phys., 74, 83 (2002); https://doi.org/10.1016/S0254-0584(01)00402-3
- Y. Caglar, M. Caglar and S. Ilican, Curr. Appl. Phys., 12, 963 (2012); https://doi.org/10.1016/j.cap.2011.12.017
- R. Mahdavi and S.A. Talesh, Adv. Powder Technol., 28, 1418 (2017); https://doi.org/10.1016/j.apt.2017.03.014
- M. Kumar, B. Singh, P. Yadav, V. Bhatt, M. Kumar, A.C. Abhyankar, K. Singh, A. Kumar and J.-H. Yun, Ceram. Int., 43, 3562 (2017); https://doi.org/10.1016/j.ceramint.2016.11.191
- D.K. Takci, E.S. Tuzemen, K. Kara, S. Yilmaz, R. Esen and O. Baglayan, J. Mater. Sci. Mater. Electron., 25, 2078 (2014); https://doi.org/10.1007/s10854-014-1843-0
- F.K. Shan, G.X. Liu, W.J. Lee and B.C. Shin, J. Cryst. Growth, 291, 328 (2006); https://doi.org/10.1016/j.jcrysgro.2006.03.036
- B.C. Mohanty, Y.H. Jo, D.H. Yeon, I.J. Choi and Y.S. Cho, Appl. Phys. Lett., 95, 062103 (2009); https://doi.org/10.1063/1.3202399
- N.W. Wang, Y.H. Yang and G.W. Yang, J. Phys. Chem. C, 113, 15480 (2009); https://doi.org/10.1021/jp906924w
- B. Cao, W. Cai and H. Zeng, Appl. Phys. Lett., 88, 161101 (2006); https://doi.org/10.1063/1.2195694
- N. Ekthammathat, S. Thongtem, T. Thongtem and A. Phuruangrat, Powder Technol., 254, 199 (2014); https://doi.org/10.1016/j.powtec.2014.01.010
- C. Manoharan, G. Pavithra, M. Bououdina, S. Dhanapandian and P. Dhamodharan, Appl. Nanosci., 6, 815 (2016); https://doi.org/10.1007/s13204-015-0493-8
- D. Valerini, L. Tammaro, F. Villani, A. Rizzo, I. Caputo, G. Paolella and G. Vigliotta, J. Mater. Sci., 55, 4830 (2020); https://doi.org/10.1007/s10853-019-04311-z
- L. He, Y. Liu, A. Mustapha and M. Lin, Microbiol. Res., 166, 207 (2011); https://doi.org/10.1016/j.micres.2010.03.003
References
O.O. Abegunde, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi and A.U. Ude, AIMS Mater. Sci., 6, 174 (2019); https://doi.org/10.3934/matersci.2019.2.174
F. Dabir, H. Esfahani, F. Bakhtiargonbadi and Z. Khodadadi, J. SolGel Sci. Technol., 96, 529 (2020); https://doi.org/10.1007/s10971-020-05269-0
J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan and M. Shimizu, J. Chem. Eng. of Jpn, 29, 627 (1996); https://doi.org/10.1252/jcej.29.627
A.G. Cuevas, K. Balangcod, T. Balangcod and A. Jasmin, Procedia Eng., 68, 537 (2013); https://doi.org/10.1016/j.proeng.2013.12.218
A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan and D. Mohamad, Nanomicro Lett., 7, 219 (2015); https://doi.org/10.1007/s40820-015-0040-x
M.L. Weththimuni, D. Capsoni, M. Malagodi and M. Licchelli, J. Nanomater., 2019, 6715756 (2019); https://doi.org/10.1155/2019/6715756
S.S. Shinde, A.P. Korade, C.H. Bhosale and K.Y. Rajpure, J. Alloys Compd., 551, 688 (2013); https://doi.org/10.1016/j.jallcom.2012.11.057
R. Wahab, A. Mishra, S. Yun, I.H. Hwang, A.A. Al-Khedhairy, Y.-S. Kim, J. Mussarat and H.-S. Shin, Biomass Bioenergy, 39, 227 (2012); https://doi.org/10.1016/j.biombioe.2012.01.005
J. Panigrahi, B. Behera, I. Mohanty, U. Subudhi, B.B. Nayak and B.S. Acharya, Appl. Surf. Sci., 258, 304 (2011); https://doi.org/10.1016/j.apsusc.2011.08.056
P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, K. Srijan, J. Wudtipan and S. Kaewtaro, Powder Technol., 212, 432 (2011); https://doi.org/10.1016/j.powtec.2011.06.028
F.K, Mugwang’a, P.K. Karimi, W.K. Njoroge and O. Omayio, J. Fund. Renew. Energy Appl., 5, 170 (2015).
S. Marouf, A. Beniaiche, H. Guessas and A. Azizi, Mater. Res., 20, 88 (2016); https://doi.org/10.1590/1980-5373-mr-2015-0751
M.R. Alfaro Cruz, O. Ceballos-Sanchez, E. Luévano-Hipólito and L.M. Torres-Martínez, Int. J. Hydrogen Energy, 43, 10301 (2018); https://doi.org/10.1016/j.ijhydene.2018.04.054
A. Kathalingam, N. Ambika, M.R. Kim, J. Elanchezhiyan, Y.S. Chae and J.K. Rhee, Mater. Sci. Pol., 28, 513 (2010).
N. Lehraki, M.S. Aida, S. Abed, N. Attaf, A. Attaf and M. Poulain, Curr. Appl. Phys., 12, 1283 (2012); https://doi.org/10.1016/j.cap.2012.03.012
G.G. Valle, P. Hammer, S.H. Pulcinelli and C.V. Santilli, J. Eur. Ceram. Soc., 24, 1009 (2004); https://doi.org/10.1016/S0955-2219(03)00597-1
A.C. Nwanya, P.R. Deshmukh, R.U. Osuji, M. Maaza, C.D. Lokhande and F.I. Ezema, Sens. Actuators B Chem., 206, 671 (2015); https://doi.org/10.1016/j.snb.2014.09.111
T. Schuler and M.A. Aegerter, Thin Solid Films, 351, 125 (1999); https://doi.org/10.1016/S0040-6090(99)00211-4
S. Bandyopadhyay, G.K. Paul, R. Roy, S.K. Sen and S. Sen, Mater. Chem. Phys., 74, 83 (2002); https://doi.org/10.1016/S0254-0584(01)00402-3
Y. Caglar, M. Caglar and S. Ilican, Curr. Appl. Phys., 12, 963 (2012); https://doi.org/10.1016/j.cap.2011.12.017
R. Mahdavi and S.A. Talesh, Adv. Powder Technol., 28, 1418 (2017); https://doi.org/10.1016/j.apt.2017.03.014
M. Kumar, B. Singh, P. Yadav, V. Bhatt, M. Kumar, A.C. Abhyankar, K. Singh, A. Kumar and J.-H. Yun, Ceram. Int., 43, 3562 (2017); https://doi.org/10.1016/j.ceramint.2016.11.191
D.K. Takci, E.S. Tuzemen, K. Kara, S. Yilmaz, R. Esen and O. Baglayan, J. Mater. Sci. Mater. Electron., 25, 2078 (2014); https://doi.org/10.1007/s10854-014-1843-0
F.K. Shan, G.X. Liu, W.J. Lee and B.C. Shin, J. Cryst. Growth, 291, 328 (2006); https://doi.org/10.1016/j.jcrysgro.2006.03.036
B.C. Mohanty, Y.H. Jo, D.H. Yeon, I.J. Choi and Y.S. Cho, Appl. Phys. Lett., 95, 062103 (2009); https://doi.org/10.1063/1.3202399
N.W. Wang, Y.H. Yang and G.W. Yang, J. Phys. Chem. C, 113, 15480 (2009); https://doi.org/10.1021/jp906924w
B. Cao, W. Cai and H. Zeng, Appl. Phys. Lett., 88, 161101 (2006); https://doi.org/10.1063/1.2195694
N. Ekthammathat, S. Thongtem, T. Thongtem and A. Phuruangrat, Powder Technol., 254, 199 (2014); https://doi.org/10.1016/j.powtec.2014.01.010
C. Manoharan, G. Pavithra, M. Bououdina, S. Dhanapandian and P. Dhamodharan, Appl. Nanosci., 6, 815 (2016); https://doi.org/10.1007/s13204-015-0493-8
D. Valerini, L. Tammaro, F. Villani, A. Rizzo, I. Caputo, G. Paolella and G. Vigliotta, J. Mater. Sci., 55, 4830 (2020); https://doi.org/10.1007/s10853-019-04311-z
L. He, Y. Liu, A. Mustapha and M. Lin, Microbiol. Res., 166, 207 (2011); https://doi.org/10.1016/j.micres.2010.03.003