Copyright (c) 2025 Divyanshi Mishra, Indu Saxena, Aditya Gupta, Preeti Yadav

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and DFT Analysis of Thermoplastic Starch Bioplastics: A Sustainable Alternative for Green Packaging
Corresponding Author(s) : Indu Saxena
Asian Journal of Chemistry,
Vol. 37 No. 8 (2025): Vol 37 Issue 8, 2025
Abstract
The growing environmental concerns about synthetic polymers have increased the need for biodegradable alternatives made from renewable resources. Starch, a naturally abundant and low-cost polysaccharide, appears to be a potential contender for long-term polymer applications. This work explores the structural and thermo-physical properties of thermoplastic starch (TPS) for use in the sustainable packaging. At 323.15 K, concentration-dependent behaviour was observed, with density increasing from 1026.5 to 1028.4 kg m–3 and viscosity increasing from 1.9855 × 10–3 to 2.1887 × 10–3 Ns m–2 as polymer concentration increased. Acoustic impedance increased proportionally (1606.47 to 1634.13 kg m–2 s–1), but adiabatic compressibility fell from 3.9775 × 10–10 to 3.8511 × 1010 kg–1 ms2, suggesting higher intermolecular interactions. DFT simulations showed that hydration improves the electrical stability of TPS by raising the HOMO-LUMO gap to 15.0763 eV, compared to 14.6969 eV for native starch. Thermodynamic study found that TPS had increased vibrational energy (281.045 kcal/mol) and entropy (187.904 cal/mol-K), confirming structural changes. Global reactivity descriptors indicated an improved chemical hardness (7.5382 eV) and decreased electrophilicity (0.0239 eV), confirmed improved material stability. Molecular docking revealed hydrogen bonding as the fundamental interaction mechanism (binding energy: -1.47 kcal/mol). These findings provide quantitative insights into TPS’s adjustable features, emphasizing its promise as a sustainable alternative to traditional polymers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- OECD, Global Plastics Outlook: Policy Scenarios to 2060. Paris: OECD Publishing; 2022; https://doi.org/10.1787/aa1edf33-en
- R. Geyer, J.R. Jambeck and K.L. Law, Sci. Adv., 3, e1700782 (2017); https://doi.org/10.1126/sciadv.1700782
- C. Li, T. Jiang, C. Zhou, A. Jiang, C. Lu, G. Yang, J. Nie, F. Wang, X. Yang and Z. Chen, Carbohydr. Polym., 299, 120198 (2023); https://doi.org/10.1016/j.carbpol.2022.120198
- P.J. Halley and L. Avérous, Starch Polymers: From Genetic Engineering to Green Applications, Amsterdam: Elsevier (2022); https://doi.org/10.1016/C2009-0-64023-X
- R. Qin and H.C. Zeng, ACS Sustain. Chem.& Eng., 6, 14979 (2018); https://doi.org/10.1021/acssuschemeng.8b03468
- M.R. Yates and C.Y. Barlow, Resour. Conserv. Recycling, 78, 54 (2013); https://doi.org/10.1016/j.resconrec.2013.06.010
- S. Pérez and E. Bertoft, Stärke, 62, 389 (2010); https://doi.org/10.1002/star.201000013
- H.-Y. Kim, J.-L. Jane and B. Lamsal, Ind. Crops Prod., 95, 175 (2017); https://doi.org/10.1016/j.indcrop.2016.10.025
- H. Liu, F. Xie, L. Yu, L. Chen and L. Li, Prog. Polym. Sci., 34, 1348 (2009); https://doi.org/10.1016/j.progpolymsci.2009.07.001
- X. Ma and J. Yu, Carbohydr. Polym., 57, 197 (2004); https://doi.org/10.1016/j.carbpol.2004.04.012
- D. Lourdin, G.D. Valle and P. Colonna, Carbohydr. Polym., 27, 261 (1995); https://doi.org/10.1016/0144-8617(95)00071-2
- L. Zha, S. Wang, L.A. Berglund and Q. Zhou, Carbohydr. Polym., 300, 120276 (2023); https://doi.org/10.1016/j.carbpol.2022.120276
- R. Thakur, P. Pristijono, C.J. Scarlett, M. Bowyer, S.P. Singh and Q.V. Vuong, Int. J. Biol. Macromol., 132, 1079 (2019); https://doi.org/10.1016/j.ijbiomac.2019.03.190
- G. Bapat, C. Labade, A. Chaudhari and S. Zinjarde, Adv. Colloid Interface Sci., 237, 1 (2016); https://doi.org/10.1016/j.cis.2016.06.001
- H. Abramczyk, A. Imiela and A. Œliwiñska, J. Mol. Liq., 272, 1002 (2018); https://doi.org/10.1016/j.molliq.2018.10.082
- F. Xie, E. Pollet, P.J. Halley and L. Avérous, Prog. Polym. Sci., 135, 101625 (2023); https://doi.org/10.1016/j.progpolymsci.2023.101625
- P. Hohenberg and W. Kohn, Phys. Rev., 136(3B), B864 (1964); https://doi.org/10.1103/PhysRev.136.B864
- X. He and Q. Lu, Carbohydr. Polym., 301, 120351 (2023); https://doi.org/10.1016/j.carbpol.2022.120351
- I. Saxena, R.N. Pathak, V. Kumar and R. Devi, Int. J. Appl. Res., 9, 562 (2015); https://doi.org/10.13140/RG.2.2.35801.83044
- R.N. Pathak and I. Saxena, Indian J. Eng. Mater. Sci., 5, 278 (1998).
- P.S. Nikam and M. Hasan, J. Chem. Eng. Data, 88, 165 (1988); https://doi.org/10.1021/je00052a032
- Y.-J. Chen, Q. Cao, J. Li, B. Yu and W.-Q. Tao, J. Mol. Liq., 311, 13306 (2020); https://doi.org/10.1016/j.molliq.2020.113306
- T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
- R. Pal and P.K. Chattaraj, J. Indian Chem. Soc., 98, 100008 (2021); https://doi.org/10.1016/j.jics.2021.100008
- P.K. Chattaraj and U. Sarkar, Chemical Reactivity Dynamics in Ground and Excited Electronic States, In: Theoretical and Computational Chemistry, Chap. 13, pp. 269–286 (2007); https://doi.org/10.1016/S1380-7323(07)80014-8
- N. Jongkon, B. Seaho, N. Tayana, S. Prateeptongkum, N. Duangdee and P. Jaiyong, Molecules, 27, 2346 (2022); https://doi.org/10.3390/molecules27072346
- R.F. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin and D.T. Mainz, J. Med. Chem., 49, 6177 (2006); https://doi.org/10.1021/jm051256o
- A. Mohammadi Nafchi, M. Moradpour, M. Saeidi and A.K. Alias, Stärke, 65, 61 (2013); https://doi.org/10.1002/star.201200201
- X. Ma, J. Yu and N. Wang, Compos. Sci. Technol., 68, 268 (2008); https://doi.org/10.1016/j.compscitech.2007.03.016
- H. Dai, P.R. Chang, J. Yu and X.N. Ma, Stärke, 60, 676 (2008); https://doi.org/10.1002/star.200800017
- E.D. Glendening, C.R. Landis and F. Weinhold, J. Comput. Chem., 40, 2114 (2019); https://doi.org/10.1002/jcc.25873
- L.K. Voon, S.C. Pang and S.F. Chin, Carbohydr. Polym., 142, 31 (2016); https://doi.org/10.1016/j.carbpol.2016.01.027
- Y. Zhang, X. Wang, C. Xu, W. Yan, Q. Tian, Z. Sun, H. Yao and J. Gao, Carbohydr. Polym., 186, 1 (2018); https://doi.org/10.1016/j.carbpol.2017.12.062
- A.K. Mishra, C. Murli, K.K. Pandey, T. Sakuntala, H.K. Poswal and A.K. Verma, J. Phys. Chem. B, 124, 373 (2020); https://doi.org/10.1021/acs.jpcb.9b10432
- A. Kumar, B. Singh and V.K. Yadav, RSC Adv., 9, 13693 (2019); https://doi.org/10.1039/C9RA01234D
- L. Chen and S. Lee, Polymer, 202, 122623 (2020); https://doi.org/10.1016/j.polymer.2020.122623
- R.G. Parr, L.V. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
- Z. Mou, Q. Yang, B. Zhao, X. Li, Y. Xu, T. Gao, H. Zheng, K. Zhou and D. Xiao, ACS Sustain. Chem.& Eng., 10, 512 (2022); https://doi.org/10.1021/acssuschemeng.1c05678
- T. Xu, Z. Gao, Y. Jia, X. Miao, X. Zhu, J. Lu, B. Wang, Y. Song, G. Ren and X. Li, Cellulose, 28, 4329 (2021); https://doi.org/10.1007/s10570-021-03803-z
- B.J. Oosten, Stärke, 34, 233 (1982); https://doi.org/10.1002/star.19820340706
- X. Liu, Y. Tong and L. Zhang, Food Chem., 303, 125369 (2020); https://doi.org/10.1016/j.foodchem.2019.125369
- S. Elanthikkal, U. Gopalakrishnapanicker, S. Varghese and J.T. Guthrie, Carbohydr. Polym., 80, 852 (2010); https://doi.org/10.1016/j.carbpol.2009.12.043
- S. Gunasekaran, S. Kumaresan, R. Arunbalaji, G. Anand and S. Srinivasan, J. Chem. Sci., 120, 315 (2008); https://doi.org/10.1007/s12039-008-0054-8
References
OECD, Global Plastics Outlook: Policy Scenarios to 2060. Paris: OECD Publishing; 2022; https://doi.org/10.1787/aa1edf33-en
R. Geyer, J.R. Jambeck and K.L. Law, Sci. Adv., 3, e1700782 (2017); https://doi.org/10.1126/sciadv.1700782
C. Li, T. Jiang, C. Zhou, A. Jiang, C. Lu, G. Yang, J. Nie, F. Wang, X. Yang and Z. Chen, Carbohydr. Polym., 299, 120198 (2023); https://doi.org/10.1016/j.carbpol.2022.120198
P.J. Halley and L. Avérous, Starch Polymers: From Genetic Engineering to Green Applications, Amsterdam: Elsevier (2022); https://doi.org/10.1016/C2009-0-64023-X
R. Qin and H.C. Zeng, ACS Sustain. Chem.& Eng., 6, 14979 (2018); https://doi.org/10.1021/acssuschemeng.8b03468
M.R. Yates and C.Y. Barlow, Resour. Conserv. Recycling, 78, 54 (2013); https://doi.org/10.1016/j.resconrec.2013.06.010
S. Pérez and E. Bertoft, Stärke, 62, 389 (2010); https://doi.org/10.1002/star.201000013
H.-Y. Kim, J.-L. Jane and B. Lamsal, Ind. Crops Prod., 95, 175 (2017); https://doi.org/10.1016/j.indcrop.2016.10.025
H. Liu, F. Xie, L. Yu, L. Chen and L. Li, Prog. Polym. Sci., 34, 1348 (2009); https://doi.org/10.1016/j.progpolymsci.2009.07.001
X. Ma and J. Yu, Carbohydr. Polym., 57, 197 (2004); https://doi.org/10.1016/j.carbpol.2004.04.012
D. Lourdin, G.D. Valle and P. Colonna, Carbohydr. Polym., 27, 261 (1995); https://doi.org/10.1016/0144-8617(95)00071-2
L. Zha, S. Wang, L.A. Berglund and Q. Zhou, Carbohydr. Polym., 300, 120276 (2023); https://doi.org/10.1016/j.carbpol.2022.120276
R. Thakur, P. Pristijono, C.J. Scarlett, M. Bowyer, S.P. Singh and Q.V. Vuong, Int. J. Biol. Macromol., 132, 1079 (2019); https://doi.org/10.1016/j.ijbiomac.2019.03.190
G. Bapat, C. Labade, A. Chaudhari and S. Zinjarde, Adv. Colloid Interface Sci., 237, 1 (2016); https://doi.org/10.1016/j.cis.2016.06.001
H. Abramczyk, A. Imiela and A. Œliwiñska, J. Mol. Liq., 272, 1002 (2018); https://doi.org/10.1016/j.molliq.2018.10.082
F. Xie, E. Pollet, P.J. Halley and L. Avérous, Prog. Polym. Sci., 135, 101625 (2023); https://doi.org/10.1016/j.progpolymsci.2023.101625
P. Hohenberg and W. Kohn, Phys. Rev., 136(3B), B864 (1964); https://doi.org/10.1103/PhysRev.136.B864
X. He and Q. Lu, Carbohydr. Polym., 301, 120351 (2023); https://doi.org/10.1016/j.carbpol.2022.120351
I. Saxena, R.N. Pathak, V. Kumar and R. Devi, Int. J. Appl. Res., 9, 562 (2015); https://doi.org/10.13140/RG.2.2.35801.83044
R.N. Pathak and I. Saxena, Indian J. Eng. Mater. Sci., 5, 278 (1998).
P.S. Nikam and M. Hasan, J. Chem. Eng. Data, 88, 165 (1988); https://doi.org/10.1021/je00052a032
Y.-J. Chen, Q. Cao, J. Li, B. Yu and W.-Q. Tao, J. Mol. Liq., 311, 13306 (2020); https://doi.org/10.1016/j.molliq.2020.113306
T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
R. Pal and P.K. Chattaraj, J. Indian Chem. Soc., 98, 100008 (2021); https://doi.org/10.1016/j.jics.2021.100008
P.K. Chattaraj and U. Sarkar, Chemical Reactivity Dynamics in Ground and Excited Electronic States, In: Theoretical and Computational Chemistry, Chap. 13, pp. 269–286 (2007); https://doi.org/10.1016/S1380-7323(07)80014-8
N. Jongkon, B. Seaho, N. Tayana, S. Prateeptongkum, N. Duangdee and P. Jaiyong, Molecules, 27, 2346 (2022); https://doi.org/10.3390/molecules27072346
R.F. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin and D.T. Mainz, J. Med. Chem., 49, 6177 (2006); https://doi.org/10.1021/jm051256o
A. Mohammadi Nafchi, M. Moradpour, M. Saeidi and A.K. Alias, Stärke, 65, 61 (2013); https://doi.org/10.1002/star.201200201
X. Ma, J. Yu and N. Wang, Compos. Sci. Technol., 68, 268 (2008); https://doi.org/10.1016/j.compscitech.2007.03.016
H. Dai, P.R. Chang, J. Yu and X.N. Ma, Stärke, 60, 676 (2008); https://doi.org/10.1002/star.200800017
E.D. Glendening, C.R. Landis and F. Weinhold, J. Comput. Chem., 40, 2114 (2019); https://doi.org/10.1002/jcc.25873
L.K. Voon, S.C. Pang and S.F. Chin, Carbohydr. Polym., 142, 31 (2016); https://doi.org/10.1016/j.carbpol.2016.01.027
Y. Zhang, X. Wang, C. Xu, W. Yan, Q. Tian, Z. Sun, H. Yao and J. Gao, Carbohydr. Polym., 186, 1 (2018); https://doi.org/10.1016/j.carbpol.2017.12.062
A.K. Mishra, C. Murli, K.K. Pandey, T. Sakuntala, H.K. Poswal and A.K. Verma, J. Phys. Chem. B, 124, 373 (2020); https://doi.org/10.1021/acs.jpcb.9b10432
A. Kumar, B. Singh and V.K. Yadav, RSC Adv., 9, 13693 (2019); https://doi.org/10.1039/C9RA01234D
L. Chen and S. Lee, Polymer, 202, 122623 (2020); https://doi.org/10.1016/j.polymer.2020.122623
R.G. Parr, L.V. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
Z. Mou, Q. Yang, B. Zhao, X. Li, Y. Xu, T. Gao, H. Zheng, K. Zhou and D. Xiao, ACS Sustain. Chem.& Eng., 10, 512 (2022); https://doi.org/10.1021/acssuschemeng.1c05678
T. Xu, Z. Gao, Y. Jia, X. Miao, X. Zhu, J. Lu, B. Wang, Y. Song, G. Ren and X. Li, Cellulose, 28, 4329 (2021); https://doi.org/10.1007/s10570-021-03803-z
B.J. Oosten, Stärke, 34, 233 (1982); https://doi.org/10.1002/star.19820340706
X. Liu, Y. Tong and L. Zhang, Food Chem., 303, 125369 (2020); https://doi.org/10.1016/j.foodchem.2019.125369
S. Elanthikkal, U. Gopalakrishnapanicker, S. Varghese and J.T. Guthrie, Carbohydr. Polym., 80, 852 (2010); https://doi.org/10.1016/j.carbpol.2009.12.043
S. Gunasekaran, S. Kumaresan, R. Arunbalaji, G. Anand and S. Srinivasan, J. Chem. Sci., 120, 315 (2008); https://doi.org/10.1007/s12039-008-0054-8