Copyright (c) 2025 Paras Nath Yadav

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Anticancer Potency of Copper(II) Complex of Coumarin and 4-(2-Aminoethyl)morpholine based Schiff Base
Corresponding Author(s) : Paras Nath Yadav
Asian Journal of Chemistry,
Vol. 37 No. 7 (2025): Vol 37 Issue 7, 2025
Abstract
A Schiff base ligand (L) synthesized from coumarin and 4-(2-aminoethyl)morpholine and its copper(II) complex was synthesized and characterized by elemental analysis, HRMS, UV-Vis, FT-IR, NMR and EPR spectroscopy. The IR band at 3358 cm–1 correspond to the O-H stretching vibration in the free ligand was intact and shifted to 3336 cm–1 in the complex. In 1H NMR, aromatic protons of the ligand were observed at 7.96-7.26 ppm while that of morpholine and ethylene were observed at 3.71-2.63 ppm, conforming the formation of Schiff base. Similarly, 13C NMR exhibited the peaks related to the individual carbon atoms in the ligand. Formation of the proposed ligand and complex was additionally supported by the HRMS spectra. Further, molecular structure of the ligand (L) was confirmed by X-ray crystallography having orthorhombic space group P212121. The unit cell dimensions were a = 5.4258(3) Å, b = 12.4715(9) Å, c = 23.6349(16) Å. The observed g values, g|| > g⊥ > ge (g||; 2.3559 and g⊥; 2.0669) for the complex indicated the Cu(II) ion in the square planner geometry. The anticancer potency of the compounds was performed with the MCF-7 cell line. The IC50 values of the free ligand was found 256.60 ± 0.11 µg/mL and that of complex [CuLCl2], 118.50 ± 0.40 µg/mL. Cell cycle study of [CuLCl2] complex showed a higher proportion of cells in G1 (33.18%) and S (23.40%) phases and a lower proportion of cells in G2 phase (30.91%). A molecular docking study showed binding affinity of the ligand; ΔG = -7.3 kcal/mol and it’s complex with ΔG = -8.0 kcal/mol along with H-bond interaction with protein EGFR, which indicates potential interactions with the biological targets.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Rawat and A.V.B. Reddy, Eur. J. Med. Chem. Rep., 5, 100038 (2022); https://doi.org/10.1016/j.ejmcr.2022.100038
- R.L. Siegel, A.N. Giaquinto and A. Jemal, CA Cancer J. Clin., 74, 12 (2024); https://doi.org/10.3322/caac.21820
- N.S. Abdel-Kader, H. Moustafa, A.L. El-Ansary, O.E. Sherif and A.M. Farghaly, New J. Chem., 45, 7714 (2021); https://doi.org/10.1039/D0NJ05688J
- Q.H. Cui, W.B. Li, Z.Y. Wang, K.Y. Xu, S. Wang, J.T. Shi, L.W. Zhang and S.W. Chen, Bioorg. Chem., 128, 106117 (2022); https://doi.org/10.1016/j.bioorg.2022.106117
- K.M. Amin, A.M. Taha, R.F. George, N.M. Mohamed and F.F. Elsenduny, Arch. Pharm., 351, 1700199 (2018); https://doi.org/10.1002/ardp.201700199
- M.K. Gupta, S. Kumar and S. Chaudhary, Asian J. Pharm. Clin. Res., 12, 27 (2019); https://doi.org/10.22159/ajpcr.2019.v12i3.30635
- F. Annunziata, C. Pinna, S. Dallavalle, L. Tamborini and A. Pinto, Int. J. Mol. Sci., 21, 4618 (2020); https://doi.org/10.3390/ijms21134618
- A.K. Yadav, R.M. Shrestha and P.N. Yadav, Eur. J. Med. Chem., 267, 116179 (2024); https://doi.org/10.1016/j.ejmech.2024.116179
- M.A. Musa, J.S. Cooperwood and M.O.F. Khan, Curr. Med. Chem., 15, 2664 (2008); https://doi.org/10.2174/092986708786242877
- Y. Tang, Y. Li, J. Han, Y. Mao, L. Ni and Y. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 208, 299 (2019); https://doi.org/10.1016/j.saa.2018.10.019
- M.N. Uddin, S.S. Ahmed and S.M.R. Alam, J. Coord. Chem., 73, 3109 (2020); https://doi.org/10.1080/00958972.2020.1854745
- H.S. Adhikari, A. Garai and P.N. Yadav, Carbohydr. Res., 526, 108796 (2023); https://doi.org/10.1016/j.carres.2023.108796
- N.K. Singh, S. Sharma, A. Krishnakumar, R.K. Choudhary, A.A. Kumbhar, R.J. Butcher, Y.R. Pokharel and P.N. Yadav, Inorg. Chem. Commun., 143, 109767 (2022); https://doi.org/10.1016/j.inoche.2022.109767
- H.S. Adhikari, A. Garai, K.D. Manandhar and P.N. Yadav, ACS Omega, 7, 30978 (2022); https://doi.org/10.1021/acsomega.2c02966
- J.E. Summerton, Curr. Top. Med. Chem., 7, 651 (2007); https://doi.org/10.2174/156802607780487740
- N.S. Gwaram and P. Hassandarvish, J. Appl. Pharm. Sci., 4, 75 (2014); https://doi.org/10.7324/JAPS.2014.401014
- M.R. Bhatta, S. Adhikari, J. Lamichhane and P.N. Yadav, J. Nepal Chem. Soc., 31, 43 (2013).
- H.R. Eisenhauer and K.P. Link, J. Am. Chem. Soc., 75, 2044 (1953); https://doi.org/10.1021/ja01105a006
- J.V. Meerloo, G.J.L. Kaspers and J. Cloos, Methods Mol. Biol.,, 731, 237 (2011); https://doi.org/10.1007/978-1-61779-080-5_20
- D.B.M. Tihãuan, L.M. Berca, M. Adascalului, A.M. Sanmartin, S. Nica and D. Cimponeriu, Rom. Biotechnol. Lett., 25, 1832 (2020); https://doi.org/10.25083/rbl/25.4/1832.1842
- F. Khan, F. Ahmed, P.N. Pushparaj, A. Abuzenadah, T. Kumosani, E. Barbour, M. AlQahtani and K. Gauthaman, PLoS One, 11, 10 (2016); https://doi.org/10.1371/journal.pone.0158963
- A.K. Yadav, N. Singh, M. Silwal, A. Adhikari and P.N. Yadav, Results Chem., 11, 101794 (2024); https://doi.org/10.1016/j.rechem.2024.101794
- N.S. Gwaram, ChemSearch J., 8, 56 (2017).
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- P. Banerjee, A.O. Eckert, A.K. Schrey and R. Preissner, Nucleic Acids Res., 46(W1), W257 (2018); https://doi.org/10.1093/nar/gky318
- D.E.V. Pires, T.L. Blundell and D.B. Ascher, J. Med. Chem., 58, 4066 (2015); https://doi.org/10.1021/acs.jmedchem.5b00104
- H. Cheng, S.K. Nair, B.W. Murray, C. Almaden, S. Bailey, S. Baxi, D. Behenna, S. Cho-Schultz, D. Dalvie, D.M. Dinh, M.P. Edwards, J.L. Feng, R.A. Ferre, K.S. Gajiwala, M.D. Hemkens, A. Jackson-Fisher, M. Jalaie, T.O. Johnson, R.S. Kania, S. Kephart, J. Lafontaine, B. Lunney, K.K.-C. Liu, Z. Liu, J. Matthews, A. Nagata, S. Niessen, M.A. Ornelas, S.T. M. Orr, M. Pairish, S. Planken, S. Ren, D. Richter, K. Ryan, N. Sach, H. Shen, T. Smeal, J. Solowiej, S. Sutton, K. Tran, E. Tseng, W. Vernier, M. Walls, S. Wang, S.L. Weinrich, S. Xin, H. Xu, M.-J. Yin, M. Zientek, R. Zhou and J.C. Kath, J. Med. Chem., 59, 2005 (2016); https://doi.org/10.1021/acs.jmedchem.5b01633
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
- A.M. Ahmed, Q.R. Ibrahim and A.K.T. Mohammad, Bas. J. Sci., 40, 43 (2022); https://doi.org/10.29072/basjs.20220103
- N. Raman, J. Joseph, A. Sakthivel and R. Jeyamurugan, J. Chil. Chem. Soc., 54, 354 (2009); https://doi.org/10.4067/S0717-97072009000400006
- R.M. Shrestha, K. Mahiya, A. Shrestha, S.R. Mohanty, S.K. Yadav and P.N. Yadav, Inorg. Chem. Commun., 161, 112142 (2024); https://doi.org/10.1016/j.inoche.2024.112142
- N.K. Singh, S. Shrestha, N. Shahi, R.K. Choudhary, A.A. Kumbhar, Y.R. Pokharel and P.N. Yadav, Rasayan J. Chem., 14, 1600 (2021); https://doi.org/10.31788/RJC.2021.1436341
- V. Arjunan, S. Sakiladevi, M.K. Marchewka and S. Mohan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 109, 79 (2013); https://doi.org/10.1016/j.saa.2013.01.100
- M.M. Abdou, Arab. J. Chem., 10, S3664 (2017); https://doi.org/10.1016/j.arabjc.2014.04.005
- R.M. Shrestha, K. Mahiya, A. Shrestha, S.R. Mohanty, S.K. Yadav and P.N. Yadav, J. Mol. Struct., 1299, 136945 (2024); https://doi.org/10.1016/j.molstruc.2023.136945
- S. Indira, R. Anbarasan, B.S. Sreeja, M. Srinivasan and P. Manikandan, Research Square, 1-19 (2022); https://doi.org/10.21203/rs.3.rs-1513188/v1
- B.S. Creaven, B. Duff, D.A. Egan, K. Kavanagh, G. Rosair, V.R. Thangella and M. Walsh, Inorg. Chim. Acta, 363, 4048 (2010); https://doi.org/10.1016/j.ica.2010.08.009
- B.S. Creaven, M. Devereux, D. Karcz, A. Kellett, M. McCann, A. Noble and M. Walsh, J. Inorg. Biochem., 103, 1196 (2009); https://doi.org/10.1016/j.jinorgbio.2009.05.017
- J. Peisach and W.E. Blumberg, Arch. Biochem. Biophys., 165, 691 (1974); https://doi.org/10.1016/0003-9861(74)90298-7
- C. Drouza, S. Spanou and A.D. Keramidas, Intech Open Topic From EPR Res., 45 (2019); https://doi.org/10.5772/intechopen.79844
- R.C. Chikate, A.R. Belapure, S.B. Padhye and D.X. West, Polyhedron, 24, 889 (2005); https://doi.org/10.1016/j.poly.2005.02.011
- E. Garribba and G. Micera, J. Chem. Educ., 83, 1229 (2006); https://doi.org/10.1021/ed083p1229
- A. Ahmed and R.A. Lal, Arab. J. Chem., 10, S901 (2017); https://doi.org/10.1016/j.arabjc.2012.12.026
- B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 5, 143 (1970); https://doi.org/10.1016/S0010-8545(00)80135-6
- P.F. Rapheal, E. Manoj and M.R.P. Kurup, Polyhedron, 26, 818 (2007); https://doi.org/10.1016/j.poly.2006.09.091
- G.M. Sheldrick, Acta Crystallogr. A Found. Adv., 71, 3 (2015); https://doi.org/10.1107/S2053273314026370
- O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, J. Appl. Cryst., 42, 339 (2009); https://doi.org/10.1107/S0021889808042726
- H.V.P. Hollauer, R.C. Vilas Novas, G.P. Guedes, C.D. Buarque and L.B.L. Escobar, Acta Crystallogr. E Crystallogr. Commun., 79, 842 (2023); https://doi.org/10.1107/S2056989023007351
- F.F. Hefti, BMC Neurosci., 9(S3), 1 (2008); https://doi.org/10.1186/1471-2202-9-S3-S7
- S.M. Paul, D.S. Mytelka, C.T. Dunwiddie, C.C. Persinger, B.H. Munos, S.R. Lindborg and A.L. Schacht, Nat. Rev. Drug Discov., 9, 203 (2010); https://doi.org/10.1038/nrd3078
- M. Muehlbacher, G.M. Spitzer, K.R. Liedl and J. Kornhuber, J. Comput. Aided Mol. Des., 25, 1095 (2011); https://doi.org/10.1007/s10822-011-9478-1
- J. Fernandes and C.R. Gattass, J. Med. Chem., 52, 1214 (2009); https://doi.org/10.1021/jm801389m
- H. Van de Waterbeemd, In Silico Models to Predict Oral Absorption, In: Comprehensive Medicinal Chemistry II, 5. pp. 669-697 (2007); https://doi.org/10.1016/B0-08-045044-X/00145-0
- M. Dinic, U. Pecikoza, J. Djokic, R. Stepanovic-Petrovic, M. Milenkovic, M. Stevanovic, N. Filipovic, J. Begovic, N. Golic and J. Lukic, Front. Pharmacol., 9, 1 (2018); https://doi.org/10.3389/fphar.2018.00001
References
A. Rawat and A.V.B. Reddy, Eur. J. Med. Chem. Rep., 5, 100038 (2022); https://doi.org/10.1016/j.ejmcr.2022.100038
R.L. Siegel, A.N. Giaquinto and A. Jemal, CA Cancer J. Clin., 74, 12 (2024); https://doi.org/10.3322/caac.21820
N.S. Abdel-Kader, H. Moustafa, A.L. El-Ansary, O.E. Sherif and A.M. Farghaly, New J. Chem., 45, 7714 (2021); https://doi.org/10.1039/D0NJ05688J
Q.H. Cui, W.B. Li, Z.Y. Wang, K.Y. Xu, S. Wang, J.T. Shi, L.W. Zhang and S.W. Chen, Bioorg. Chem., 128, 106117 (2022); https://doi.org/10.1016/j.bioorg.2022.106117
K.M. Amin, A.M. Taha, R.F. George, N.M. Mohamed and F.F. Elsenduny, Arch. Pharm., 351, 1700199 (2018); https://doi.org/10.1002/ardp.201700199
M.K. Gupta, S. Kumar and S. Chaudhary, Asian J. Pharm. Clin. Res., 12, 27 (2019); https://doi.org/10.22159/ajpcr.2019.v12i3.30635
F. Annunziata, C. Pinna, S. Dallavalle, L. Tamborini and A. Pinto, Int. J. Mol. Sci., 21, 4618 (2020); https://doi.org/10.3390/ijms21134618
A.K. Yadav, R.M. Shrestha and P.N. Yadav, Eur. J. Med. Chem., 267, 116179 (2024); https://doi.org/10.1016/j.ejmech.2024.116179
M.A. Musa, J.S. Cooperwood and M.O.F. Khan, Curr. Med. Chem., 15, 2664 (2008); https://doi.org/10.2174/092986708786242877
Y. Tang, Y. Li, J. Han, Y. Mao, L. Ni and Y. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 208, 299 (2019); https://doi.org/10.1016/j.saa.2018.10.019
M.N. Uddin, S.S. Ahmed and S.M.R. Alam, J. Coord. Chem., 73, 3109 (2020); https://doi.org/10.1080/00958972.2020.1854745
H.S. Adhikari, A. Garai and P.N. Yadav, Carbohydr. Res., 526, 108796 (2023); https://doi.org/10.1016/j.carres.2023.108796
N.K. Singh, S. Sharma, A. Krishnakumar, R.K. Choudhary, A.A. Kumbhar, R.J. Butcher, Y.R. Pokharel and P.N. Yadav, Inorg. Chem. Commun., 143, 109767 (2022); https://doi.org/10.1016/j.inoche.2022.109767
H.S. Adhikari, A. Garai, K.D. Manandhar and P.N. Yadav, ACS Omega, 7, 30978 (2022); https://doi.org/10.1021/acsomega.2c02966
J.E. Summerton, Curr. Top. Med. Chem., 7, 651 (2007); https://doi.org/10.2174/156802607780487740
N.S. Gwaram and P. Hassandarvish, J. Appl. Pharm. Sci., 4, 75 (2014); https://doi.org/10.7324/JAPS.2014.401014
M.R. Bhatta, S. Adhikari, J. Lamichhane and P.N. Yadav, J. Nepal Chem. Soc., 31, 43 (2013).
H.R. Eisenhauer and K.P. Link, J. Am. Chem. Soc., 75, 2044 (1953); https://doi.org/10.1021/ja01105a006
J.V. Meerloo, G.J.L. Kaspers and J. Cloos, Methods Mol. Biol.,, 731, 237 (2011); https://doi.org/10.1007/978-1-61779-080-5_20
D.B.M. Tihãuan, L.M. Berca, M. Adascalului, A.M. Sanmartin, S. Nica and D. Cimponeriu, Rom. Biotechnol. Lett., 25, 1832 (2020); https://doi.org/10.25083/rbl/25.4/1832.1842
F. Khan, F. Ahmed, P.N. Pushparaj, A. Abuzenadah, T. Kumosani, E. Barbour, M. AlQahtani and K. Gauthaman, PLoS One, 11, 10 (2016); https://doi.org/10.1371/journal.pone.0158963
A.K. Yadav, N. Singh, M. Silwal, A. Adhikari and P.N. Yadav, Results Chem., 11, 101794 (2024); https://doi.org/10.1016/j.rechem.2024.101794
N.S. Gwaram, ChemSearch J., 8, 56 (2017).
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
P. Banerjee, A.O. Eckert, A.K. Schrey and R. Preissner, Nucleic Acids Res., 46(W1), W257 (2018); https://doi.org/10.1093/nar/gky318
D.E.V. Pires, T.L. Blundell and D.B. Ascher, J. Med. Chem., 58, 4066 (2015); https://doi.org/10.1021/acs.jmedchem.5b00104
H. Cheng, S.K. Nair, B.W. Murray, C. Almaden, S. Bailey, S. Baxi, D. Behenna, S. Cho-Schultz, D. Dalvie, D.M. Dinh, M.P. Edwards, J.L. Feng, R.A. Ferre, K.S. Gajiwala, M.D. Hemkens, A. Jackson-Fisher, M. Jalaie, T.O. Johnson, R.S. Kania, S. Kephart, J. Lafontaine, B. Lunney, K.K.-C. Liu, Z. Liu, J. Matthews, A. Nagata, S. Niessen, M.A. Ornelas, S.T. M. Orr, M. Pairish, S. Planken, S. Ren, D. Richter, K. Ryan, N. Sach, H. Shen, T. Smeal, J. Solowiej, S. Sutton, K. Tran, E. Tseng, W. Vernier, M. Walls, S. Wang, S.L. Weinrich, S. Xin, H. Xu, M.-J. Yin, M. Zientek, R. Zhou and J.C. Kath, J. Med. Chem., 59, 2005 (2016); https://doi.org/10.1021/acs.jmedchem.5b01633
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
A.M. Ahmed, Q.R. Ibrahim and A.K.T. Mohammad, Bas. J. Sci., 40, 43 (2022); https://doi.org/10.29072/basjs.20220103
N. Raman, J. Joseph, A. Sakthivel and R. Jeyamurugan, J. Chil. Chem. Soc., 54, 354 (2009); https://doi.org/10.4067/S0717-97072009000400006
R.M. Shrestha, K. Mahiya, A. Shrestha, S.R. Mohanty, S.K. Yadav and P.N. Yadav, Inorg. Chem. Commun., 161, 112142 (2024); https://doi.org/10.1016/j.inoche.2024.112142
N.K. Singh, S. Shrestha, N. Shahi, R.K. Choudhary, A.A. Kumbhar, Y.R. Pokharel and P.N. Yadav, Rasayan J. Chem., 14, 1600 (2021); https://doi.org/10.31788/RJC.2021.1436341
V. Arjunan, S. Sakiladevi, M.K. Marchewka and S. Mohan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 109, 79 (2013); https://doi.org/10.1016/j.saa.2013.01.100
M.M. Abdou, Arab. J. Chem., 10, S3664 (2017); https://doi.org/10.1016/j.arabjc.2014.04.005
R.M. Shrestha, K. Mahiya, A. Shrestha, S.R. Mohanty, S.K. Yadav and P.N. Yadav, J. Mol. Struct., 1299, 136945 (2024); https://doi.org/10.1016/j.molstruc.2023.136945
S. Indira, R. Anbarasan, B.S. Sreeja, M. Srinivasan and P. Manikandan, Research Square, 1-19 (2022); https://doi.org/10.21203/rs.3.rs-1513188/v1
B.S. Creaven, B. Duff, D.A. Egan, K. Kavanagh, G. Rosair, V.R. Thangella and M. Walsh, Inorg. Chim. Acta, 363, 4048 (2010); https://doi.org/10.1016/j.ica.2010.08.009
B.S. Creaven, M. Devereux, D. Karcz, A. Kellett, M. McCann, A. Noble and M. Walsh, J. Inorg. Biochem., 103, 1196 (2009); https://doi.org/10.1016/j.jinorgbio.2009.05.017
J. Peisach and W.E. Blumberg, Arch. Biochem. Biophys., 165, 691 (1974); https://doi.org/10.1016/0003-9861(74)90298-7
C. Drouza, S. Spanou and A.D. Keramidas, Intech Open Topic From EPR Res., 45 (2019); https://doi.org/10.5772/intechopen.79844
R.C. Chikate, A.R. Belapure, S.B. Padhye and D.X. West, Polyhedron, 24, 889 (2005); https://doi.org/10.1016/j.poly.2005.02.011
E. Garribba and G. Micera, J. Chem. Educ., 83, 1229 (2006); https://doi.org/10.1021/ed083p1229
A. Ahmed and R.A. Lal, Arab. J. Chem., 10, S901 (2017); https://doi.org/10.1016/j.arabjc.2012.12.026
B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 5, 143 (1970); https://doi.org/10.1016/S0010-8545(00)80135-6
P.F. Rapheal, E. Manoj and M.R.P. Kurup, Polyhedron, 26, 818 (2007); https://doi.org/10.1016/j.poly.2006.09.091
G.M. Sheldrick, Acta Crystallogr. A Found. Adv., 71, 3 (2015); https://doi.org/10.1107/S2053273314026370
O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, J. Appl. Cryst., 42, 339 (2009); https://doi.org/10.1107/S0021889808042726
H.V.P. Hollauer, R.C. Vilas Novas, G.P. Guedes, C.D. Buarque and L.B.L. Escobar, Acta Crystallogr. E Crystallogr. Commun., 79, 842 (2023); https://doi.org/10.1107/S2056989023007351
F.F. Hefti, BMC Neurosci., 9(S3), 1 (2008); https://doi.org/10.1186/1471-2202-9-S3-S7
S.M. Paul, D.S. Mytelka, C.T. Dunwiddie, C.C. Persinger, B.H. Munos, S.R. Lindborg and A.L. Schacht, Nat. Rev. Drug Discov., 9, 203 (2010); https://doi.org/10.1038/nrd3078
M. Muehlbacher, G.M. Spitzer, K.R. Liedl and J. Kornhuber, J. Comput. Aided Mol. Des., 25, 1095 (2011); https://doi.org/10.1007/s10822-011-9478-1
J. Fernandes and C.R. Gattass, J. Med. Chem., 52, 1214 (2009); https://doi.org/10.1021/jm801389m
H. Van de Waterbeemd, In Silico Models to Predict Oral Absorption, In: Comprehensive Medicinal Chemistry II, 5. pp. 669-697 (2007); https://doi.org/10.1016/B0-08-045044-X/00145-0
M. Dinic, U. Pecikoza, J. Djokic, R. Stepanovic-Petrovic, M. Milenkovic, M. Stevanovic, N. Filipovic, J. Begovic, N. Golic and J. Lukic, Front. Pharmacol., 9, 1 (2018); https://doi.org/10.3389/fphar.2018.00001