Copyright (c) 2025 Dr.B.Vigneashwari Balasubramanian, K.Vijayakumar, R. Yoga Indra Eniya

This work is licensed under a Creative Commons Attribution 4.0 International License.
Investigation of Structural, Optical and Luminescent Properties of Zinc Sulfide Quantum Dots under the Influence of Acoustic Shockwaves
Corresponding Author(s) : B. Vigneashwari
Asian Journal of Chemistry,
Vol. 37 No. 7 (2025): Vol 37 Issue 7, 2025
Abstract
Zinc sulfide (ZnS) is a promising semiconducting material with its applications in optoelectronics and solar cell technologies. In this research, ZnS QDs were synthesized by co-precipitation technique. The powder X-ray diffraction analysis and high-resolution transmission electron microscopy (HRTEM) revealed that as-synthesized ZnS possess a cubic structure in the quantum dot (QD) regime. Furthermore, the compositional purity of as-prepared sample were analyzed using energy dispersive X-ray Analysis (EDAX). The prepared material was exposed to acoustic shockwaves in a series of 200 and 400 shock pulses using a semi-automatic Reddy tube, an instrument manufactured indigenously to generate acoustic shockwaves having a Mach number of 1.5, a transient temperature and pressure of 520 K and 0.59 MPa. The experimental findings of the present work state that ZnS QDs with a cubic structure are studied under the acoustic shockwave-treated conditions and the effect of high-pressure created on the structural parameters was systematically studied using the PXRD technique. The optical properties were studied using UV-Vis DRS analysis shows a noticeable shift in the absorption wavelength along with the tunable optical band gap energy (Eg). The photoluminescence (PL) spectra showed an increase in the PL intensity at 400 shock-loaded conditions, demonstrating the improved crystallinity and reduction in defects. Finally, the structure-property relationship of ZnS with respect to the strength of shockwave exposure was discussed in detail. The obtained experimental results suggest that ZnS QDs can be suitable for optoelectronics, luminescent devices and durable shockwave-resistant solar energy harvesting systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Mayilswamy, A. Krishnan, M. Mundhada, H. Deodhar, G. Joshi and B. Kandasubramanian, Ind. Eng. Chem. Res., 62, 6584 (2023); https://doi.org/10.1021/acs.iecr.3c00837
- L.S. Chinke, I.S. Sandhu, D.R. Saroha and P.S. Alegaonkar, ACS Appl. Nano Mater., 1, 6027 (2018); https://doi.org/10.1021/acsanm.8b01061
- S.C. Gupta, Bull. Mater. Sci., 22, 295 (1999).
- A. Sivakumar, S.S.J. Dhas, P. Sivaprakash, A.I. Almansour, R.S. Kumar, N. Arumugam, S. Arumugam and S.A.M.B. Dhas, New J. Chem., 45, 16529 (2021); https://doi.org/10.1039/D1NJ02974F
- A. Sivakumar, S.S.J. Dhas, S. Chakraborty, R.S. Kumar, A.I. Almansour, N. Arumugam and S.A.M.B. Dhas, J. Phys. Chem. C, 126, 3194 (2022); https://doi.org/10.1021/acs.jpcc.1c09411
- A. Sivakumar, S.S.J. Dhas, J. Thirupathy, K.P.J. Reddy, R.S. Kumar, A.I. Almansour, S. Chakraborty and S.A.M.B. Dhas, New J. Chem., 46, 5091 (2022); https://doi.org/10.1039/D2NJ00129B
- Z. Liu, L. Zhang and D. Sun, Chem. Commun., 56, 9416 (2020); https://doi.org/10.1039/D0CC03197F
- L. Zhou, P.-P. Shi, X. Zheng, F.-J. Geng, Q. Ye and D.-W. Fu, Chem. Commun., 54, 13111 (2018); https://doi.org/10.1039/C8CC07311B
- K. Kadau, T.C. Germann, P.S. Lomdahl and B.L. Holian, Science, 296, 1681 (2002); https://doi.org/10.1126/science.1070375
- W. Xuan, R. Pow, N. Watfa, Q. Zheng, A.J. Surman, D.-L. Long and L. Cronin, J. Am. Chem. Soc., 141, 1242 (2019); https://doi.org/10.1021/jacs.8b09750
- Z. Su, W.L. Shaw, Y.-R. Miao, S. You, D.D. Dlott and K.S. Suslick, J. Am. Chem. Soc., 139, 4619 (2017); https://doi.org/10.1021/jacs.6b12956
- N.K. Reddy, V. Jayaram, E. Arunan, Y.-B. Kwon, W.J. Moon and K.P.J. Reddy, Diamond Rel. Mater., 35, 53 (2013); https://doi.org/10.1016/j.diamond.2013.03.005
- A. Sivakumar, S.R. Devi, S.S.J. Dhas, R.M. Kumar, K.K. Bharathi and S.A.M.B. Dhas, Cryst. Growth Des., 20, 7111 (2020); https://doi.org/10.1021/acs.cgd.0c00214
- A. Sivakumar, S.S.J. Dhas and S.A.M.B. Dhas, J. Mater. Sci. Mater. Electron., 31, 13704 (2020); https://doi.org/10.1007/s10854-020-03928-0
- V. Jayaram, P. Singh, K.P.J. Reddy, Adv. Ceram. Sci. Eng., 2, 40 (2013).
- S. Kalaiarasi, A. Sivakumar, S.A.M.B. Dhas and M. Jose, Mater. Lett., 219, 72 (2018); https://doi.org/10.1016/j.matlet.2018.02.064
- A. Rita, A. Sivakumar, M. Jose and S.A.M.B. Dhas, Mater. Res. Express, 6, 095035 (2019); https://doi.org/10.1088/2053-1591/ab2eba
- V. Jayaram, A. Gupta and K.P.J. Reddy, J. Adv. Ceram., 3, 297 (2014); https://doi.org/10.1007/s40145-014-0121-1
- M. Devika, N.K. Reddy, V. Jayaram and K.P.J. Reddy, Adv. Mater. Lett., 8, 398 (2017); https://doi.org/10.5185/amlett.2017.6890
- A. Sivakumar, S. Soundarya, S.S.J. Dhas, K.K. Bharathi, S.A.M.B. Dhas, J. Phys. Chem. C, 124, 10755 (2020); https://doi.org/10.1021/acs.jpcc.0c02146
- A. Rita, A. Sivakumar and S.A.M.B. Dhas, J. Supercond. Nov. Magn., 33, 1845 (2020); https://doi.org/10.1007/s10948-020-05435-z
- V. Mowlika, C.S. Naveen, A.R. Phani, A. Sivakumar, S.A.M.B. Dhas and R. Robert, J. Mater. Sci. Mater. Electron., 31, 14851 (2020); https://doi.org/10.1007/s10854-020-04047-6
- A. Sivakumar, S.S.J. Dhas and S.A.M.B. Dhas, Solid State Sci., 107, 106340 (2020); https://doi.org/10.1016/j.solidstatesciences.2020.106340
- K. Showrilu, C. Jyothirmai, A.R.N.L. Sirisha, A. Sivakumar, S.S.J. Dhas and S.A.M.B. Dhas , J. Mater. Sci. Mater. Electron., 32, 3903 (2021); https://doi.org/10.1007/s10854-020-05133-5
- K. Vasu, H.S.S.R. Matte, S.N. Shirodkar, V. Jayaram, K.P.J. Reddy, U.V. Waghmare and C.N.R. Rao, Chem. Phys. Lett., 582, 105 (2013); https://doi.org/10.1016/j.cplett.2013.07.044
- S. Aswathappa, L. Dai, S.J.D. Sathiyadhas, M.B.D.S. Amalapushpam, M. Vijayan, R.S. Kumar and A.I. Almansour, Ceram. Int., 50, 7418 (2024); https://doi.org/10.1016/j.ceramint.2023.12.028
- E.K. Goharshadi, R. Mehrkhah and P. Nancarrow, Mater. Sci. Semicond. Process., 16, 356 (2013); https://doi.org/10.1016/j.mssp.2012.09.012
- K.T. Al-Rasoul, I.M. Ibrahim, I.M. Ali and R.M. Al-Haddad, Int. J. Sci. Technol. Res., 3, 213 (2014).
- M. Madkour, T. Salih, F. Al-Sagheer and A. Bumajdad, Opt. Mater. Express, 6, 2857 (2016); https://doi.org/10.1364/OME.6.002857
- C. Ippen, T. Greco, Y. Kim, J. Kim, M.S. Oh, C.J. Han and A. Wedel, Org. Electron., 15, 126 (2014); https://doi.org/10.1016/j.orgel.2013.11.003
- W. Zhang, S. Ding, W. Zhuang, D. Wu, P. Liu, X. Qu, H. Liu, H. Yang, Z. Wu, K. Wang and X.W. Sun, Adv. Funct. Mater., 30, 2005303 (2020); https://doi.org/10.1002/adfm.202005303
- H. Kumar, A. Kumari and R.R. Singh, Opt. Mater., 69, 23 (2017); https://doi.org/10.1016/j.optmat.2017.04.009
- R. Zhang, Y. Wang, M. Jia, J. Xu and E. Pan, Appl. Surf. Sci., 437, 375 (2018); https://doi.org/10.1016/j.apsusc.2017.12.110
- T.I. Chanu, D. Samanta, A. Tiwari and S. Chatterjee, Appl. Surf. Sci., 391, 548 (2017); https://doi.org/10.1016/j.apsusc.2016.05.045
- K. Komal, P. Shikha and T.S. Kang, New J. Chem., 41, 7407 (2017); https://doi.org/10.1039/C7NJ01373F
- S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray and B.R. Ratna, Phys. Rev. B Condens. Matter, 60, 9191 (1999); https://doi.org/10.1103/PhysRevB.60.9191
- S. Oviya, F.I. Maria Bincy, R.S. Kumar, P. Kannappan, I. Kim and S.A.M. Britto Dhas, Mater. Chem. Phys., 333, 130287 (2025); https://doi.org/10.1016/j.matchemphys.2024.130287
- F.I.M. Bincy, S. Oviya, R.S. Kumar, P. Kanappan, I. kim and S.A.M.B. Dhas, J. Mater. Sci., 59, 7044 (2024); https://doi.org/10.1007/s10853-024-09574-9
- S.L. Morelhão, S.W. Kycia, S. Netzke, C.I. Fornari, P.H.O. Rappl and E. Abramof, J. Phys. Chem. C, 123, 24818 (2019); https://doi.org/10.1021/acs.jpcc.9b05377
- C.O. Ehi-Eromosele, B.I. Ita and E.E.J. Iweala, J. Sol-Gel Sci. Technol., 76, 298 (2015); https://doi.org/10.1007/s10971-015-3777-2
- B. Azhdar, J. Exp. Nanosci., 18, 2276278 (2023); https://doi.org/10.1080/17458080.2023.2276278
- Y. Sun, L. Wang, Y. Liu and Y. Ren, Small, 11, 300 (2015); https://doi.org/10.1002/smll.201400892
- P.H. Le, C.-N. Liao, C.W. Luo and J. Leu, J. Alloys Compd., 615, 546 (2014); https://doi.org/10.1016/j.jallcom.2014.07.018
- A. Sivakumar, S.S.J. Dhas, S. Balachandar and S.A.M.B. Dhas, J. Electron. Mater., 48, 7868 (2019); https://doi.org/10.1007/s11664-019-07605-9
- Z.Y. Liu, J. Li, J.F. Zhang, J. Li, P.T. Yang, S. Zhang, G.F. Chen, Y. Uwatoko, H.X. Yang, Y. Sui, K. Liu and J.-G. Cheng, NPJ Quantum Mater., 6, 90 (2021); https://doi.org/10.1038/s41535-021-00393-8
- A. Rita, A. Sivakumar and S.A.M.B. Dhas, J. Nanostruct. Chem., 9, 225 (2019); https://doi.org/10.1007/s40097-019-00313-0
- X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando and D. Golberg, Prog. Mater. Sci., 56, 175 (2011); https://doi.org/10.1016/j.pmatsci.2010.10.001
- S.B. Qadri, E.F. Skelton, A.D. Dinsmore, J.Z. Hu, W.J. Kim, C. Nelson and B.R. Ratna, J. Appl. Phys., 89, 115 (2001); https://doi.org/10.1063/1.1328066
- H. Zhao, W. Liu, J. Zhu, X. Shen, L. Xiong, Y. Li, X. Li, J. Liu, R. Wang, C. Jin and R. Yu, High Press. Res., 35, 9 (2015); https://doi.org/10.1080/08957959.2014.996562
- Y. Ji, L. Guo, H. Xu, J. Liu, X. Li, Y. Li, Z. Wu and P. Simon, Phys. Status Solidi, A Appl. Res., 198, 210 (2003); https://doi.org/10.1002/pssa.200306450
- I. Yu, T. Isobe and M. Senna, J. Phys. Chem. Solids, 57, 373 (1996); https://doi.org/10.1016/0022-3697(95)00285-5
- Y.L. Li, Y.H. Wang and J. Yun, Guangpuxue Yu Guangpu Fenxi, 27, 1890 (2007).
- X.W. Zhao, S. Komuro, S. Fujita, H. Isshiki, Y. Aoyagi and T. Sugano, Mater. Sci. Eng. B, 51, 154 (1998); https://doi.org/10.1016/S0921-5107(97)00250-X
- J. Borah, J. Barman and K.C. Sarma, Chalcogenide Lett., 5, 201 (2008).
- A.P. Alivisatos, Nature, 271, 933 (1996); https://doi.org/10.1126/science.271.5251.933
- S.H.A. Allehyani, R. Seoudi, D.A. Said, A.R. Lashin and A. Abouelsayed, J. Electr. Mater., 44, 4227 (2015); https://doi.org/10.1007/s11664-015-3974-3
- A. Rai, P. Phogat, Shreya, R. Jha and S. Singh, MATEC Web Conf., 393, 01011 (2024); https://doi.org/10.1051/matecconf/202439301011
- H. Tang, G. Xu, L. Weng, L. Pan and L. Wang, Acta Mater., 52, 1489 (2004); https://doi.org/10.1016/j.actamat.2003.11.030
- Y. Li, Y. Ding, Y. Zhang and Y. Qian, J. Phys. Chem. Solids, 60, 13 (1999); https://doi.org/10.1016/S0022-3697(98)00247-9
- A.E. Raevskaya, A.V. Korzhak, A.L. Stroyuk and S.Y. Kuchmii, Theor. Exp. Chem., 41, 111 (2005); https://doi.org/10.1007/s11237-005-0029-5
- A.M. Al-Baradi, M.M. El-Nahass, M.M.A. El-Raheem, A.A. Atta and A.M. Hassanien, Radiat. Phys. Chem., 103, 227 (2014); https://doi.org/10.1016/j.radphyschem.2014.05.055
- Z. Li, B. Liu, S. Yu, J. Wang, Q. Li, B. Zou, T. Cui, Z. Liu, Z. Chen and J. Liu, J. Phys. Chem. C, 115, 357 (2011); https://doi.org/10.1021/jp107304v
- Z. Li, J. Wang, B. Liu and J. Liu, J. Phys. Chem. C, 120, 781 (2016); https://doi.org/10.1021/acs.jpcc.5b11195
- V.D. Mote and B.N. Dole, J. Mater. Sci. Mater. Electron., 32, 420 (2021); https://doi.org/10.1007/s10854-020-04790-w
- S. Atroshenko, A. Divakov, Y. Meshcheryakov and N. Naumova, Mater. Sci. Forum, 794, 755 (2014); https://doi.org/10.4028/www.scientific.net/MSF.794-796.755
- D. Raabe, Recovery and Recrystallization: Phenomena, Physics, Models, Simulation, In: Physical Metallurgy, Elsevier edn. 5, pp. 2291–2397 (2014).
- A.A. El-Fadl and A.M. Nashaat, Radiat. Eff. Defects Solids, 170, 863 (2015); https://doi.org/10.1080/10420150.2015.1123259
- M.A. Gaffar and A. Abu El-Fadl, Cryst. Res. Technol., 34, 915 (1999); https://doi.org/10.1002/(SICI)1521-4079(199908)34:7<915::AID-CRAT915>3.0.CO;2-W
- F. Wang, M. Tan, C. Li, C. Niu, X. Zhao, Org. Electron., 67, 89 (2019); https://doi.org/10.1016/j.orgel.2019.01.003
- R. Sreekumar, R. Jayakrishnan, C. Sudha Kartha, K.P. Vijayakumar, S.A. Khan and D.K. Avasthi, J. Appl. Phys., 103, 23709 (2008); https://doi.org/10.1063/1.2829812
- N. Puri, K.R. Gupta, N.C. Mehra, R.P. Tandon and A.K. Mahapatro, Integr. Ferroelectr., 184, 9 (2017); https://doi.org/10.1080/10584587.2017.1368630
- X. Ren, X. Yan, A.S. Ahmad, H. Cheng, Y. Li, Y. Zhao, L. Wang and S. Wang, J. Phys. Chem. C, 123, 15204 (2019); https://doi.org/10.1021/acs.jpcc.9b02854
- X. Ren, X. Yan, A.S. Ahmad, H. Cheng, Y. Li, Y. Zhao, L. Wang and S. Wang, Chalcogenide Lett., 5, 297 (2008); https://doi.org/10.1021/acs.jpcc.9b02854
- Y. Kanemitsu, Y. Ishida, I. Nakada and H. Kuroda, Appl. Phys. Lett., 48, 209 (1986); https://doi.org/10.1063/1.96797
- M.N. Siddique, T. Ali, A. Ahmed and P. Tripathi, Nano-Object., 16, 156 (2018); https://doi.org/10.1016/j.nanoso.2018.06.001
- A. Sivakumar, A. Saranraj, S. Sahaya Jude Dhas, M. Jose and S.A. Martin Britto Dhas, Opt. Eng., 58, 077104 (2019); https://doi.org/10.1117/1.OE.58.7.077104
- L. Li, J. Hu, W. Yang and A.P. Alivisatos, Nano Lett., 1, 349 (2001); https://doi.org/10.1021/nl015559r
- O.L. Stroyuk, V.M. Dzhagan, V.V. Shvalagin and S.Y. Kuchmiy, J. Phys. Chem. C, 114, 220 (2010); https://doi.org/10.1021/jp908879h
- H.C. Liao, M.C. Wu, M.H. Jao, C.M. Chuang, Y.F. Chen and W.F. Su, CrystEngComm, 14, 3645 (2012); https://doi.org/10.1039/c2ce06154f
- W.M. Linhart, S.J. Zelewski, P. Scharoch, F. Dybala and R. Kudrawiec, J. Mater. Chem. C Mater. Opt. Electron. Devices, 9, 13733 (2021); https://doi.org/10.1039/D1TC03625D
- Z. Amara, M. Khadraoui, R. Miloua, M.N. Amroun and K. Sahraoui, J. Optoelectron. Adv. Mater., 22, 163 (2020).
- X.T. Zhou, P.-S.G. Kim, T.K. Sham and S.T. Lee, J. Appl. Phys., 98, 024312 (2005); https://doi.org/10.1063/1.1988974
- S. Naseem Shah, S. Rizwan Ali, S. Qaseem, Yasmeen Bibi, U. Majeed, S. Masood, J Nanoscope, 3, 1 (2022); https://doi.org/10.52700/jn.v3i1
- A.K. Kole and P. Kumbhakar, Appl. Nanosci., 2, 15 (2012); https://doi.org/10.1007/s13204-011-0036-x
- C. Ye, X. Fang, G. Li and L. Zhang, Appl. Phys. Lett., 85, 3035 (2004); https://doi.org/10.1063/1.1807018
- C.S. Tiwary, P. Kumbhakar, A.K. Mondal and A.K. Mitra, Phys. Status Solidi., A Appl. Mater. Sci., 207, 1874 (2010); https://doi.org/10.1002/pssa.200925341
- D. Denzler, M. Olschewski and K. Sattler, J. Appl. Phys., 84, 2841 (1998); https://doi.org/10.1063/1.368425
- K.A. Bhabu, J. Theerthagiri, J. Madhavan, T. Balu, G. Muralidharan and T.R. Rajasekaran, J. Mater. Sci. Mater. Electron., 27, 10980 (2016); https://doi.org/10.1007/s10854-016-5214-x
- C. Mrabet, M. Ben Amor, A. Boukhachem, M. Amlouk and T. Manoubi, Ceram. Int., 42, 5963 (2016); https://doi.org/10.1016/j.ceramint.2015.12.144
References
N. Mayilswamy, A. Krishnan, M. Mundhada, H. Deodhar, G. Joshi and B. Kandasubramanian, Ind. Eng. Chem. Res., 62, 6584 (2023); https://doi.org/10.1021/acs.iecr.3c00837
L.S. Chinke, I.S. Sandhu, D.R. Saroha and P.S. Alegaonkar, ACS Appl. Nano Mater., 1, 6027 (2018); https://doi.org/10.1021/acsanm.8b01061
S.C. Gupta, Bull. Mater. Sci., 22, 295 (1999).
A. Sivakumar, S.S.J. Dhas, P. Sivaprakash, A.I. Almansour, R.S. Kumar, N. Arumugam, S. Arumugam and S.A.M.B. Dhas, New J. Chem., 45, 16529 (2021); https://doi.org/10.1039/D1NJ02974F
A. Sivakumar, S.S.J. Dhas, S. Chakraborty, R.S. Kumar, A.I. Almansour, N. Arumugam and S.A.M.B. Dhas, J. Phys. Chem. C, 126, 3194 (2022); https://doi.org/10.1021/acs.jpcc.1c09411
A. Sivakumar, S.S.J. Dhas, J. Thirupathy, K.P.J. Reddy, R.S. Kumar, A.I. Almansour, S. Chakraborty and S.A.M.B. Dhas, New J. Chem., 46, 5091 (2022); https://doi.org/10.1039/D2NJ00129B
Z. Liu, L. Zhang and D. Sun, Chem. Commun., 56, 9416 (2020); https://doi.org/10.1039/D0CC03197F
L. Zhou, P.-P. Shi, X. Zheng, F.-J. Geng, Q. Ye and D.-W. Fu, Chem. Commun., 54, 13111 (2018); https://doi.org/10.1039/C8CC07311B
K. Kadau, T.C. Germann, P.S. Lomdahl and B.L. Holian, Science, 296, 1681 (2002); https://doi.org/10.1126/science.1070375
W. Xuan, R. Pow, N. Watfa, Q. Zheng, A.J. Surman, D.-L. Long and L. Cronin, J. Am. Chem. Soc., 141, 1242 (2019); https://doi.org/10.1021/jacs.8b09750
Z. Su, W.L. Shaw, Y.-R. Miao, S. You, D.D. Dlott and K.S. Suslick, J. Am. Chem. Soc., 139, 4619 (2017); https://doi.org/10.1021/jacs.6b12956
N.K. Reddy, V. Jayaram, E. Arunan, Y.-B. Kwon, W.J. Moon and K.P.J. Reddy, Diamond Rel. Mater., 35, 53 (2013); https://doi.org/10.1016/j.diamond.2013.03.005
A. Sivakumar, S.R. Devi, S.S.J. Dhas, R.M. Kumar, K.K. Bharathi and S.A.M.B. Dhas, Cryst. Growth Des., 20, 7111 (2020); https://doi.org/10.1021/acs.cgd.0c00214
A. Sivakumar, S.S.J. Dhas and S.A.M.B. Dhas, J. Mater. Sci. Mater. Electron., 31, 13704 (2020); https://doi.org/10.1007/s10854-020-03928-0
V. Jayaram, P. Singh, K.P.J. Reddy, Adv. Ceram. Sci. Eng., 2, 40 (2013).
S. Kalaiarasi, A. Sivakumar, S.A.M.B. Dhas and M. Jose, Mater. Lett., 219, 72 (2018); https://doi.org/10.1016/j.matlet.2018.02.064
A. Rita, A. Sivakumar, M. Jose and S.A.M.B. Dhas, Mater. Res. Express, 6, 095035 (2019); https://doi.org/10.1088/2053-1591/ab2eba
V. Jayaram, A. Gupta and K.P.J. Reddy, J. Adv. Ceram., 3, 297 (2014); https://doi.org/10.1007/s40145-014-0121-1
M. Devika, N.K. Reddy, V. Jayaram and K.P.J. Reddy, Adv. Mater. Lett., 8, 398 (2017); https://doi.org/10.5185/amlett.2017.6890
A. Sivakumar, S. Soundarya, S.S.J. Dhas, K.K. Bharathi, S.A.M.B. Dhas, J. Phys. Chem. C, 124, 10755 (2020); https://doi.org/10.1021/acs.jpcc.0c02146
A. Rita, A. Sivakumar and S.A.M.B. Dhas, J. Supercond. Nov. Magn., 33, 1845 (2020); https://doi.org/10.1007/s10948-020-05435-z
V. Mowlika, C.S. Naveen, A.R. Phani, A. Sivakumar, S.A.M.B. Dhas and R. Robert, J. Mater. Sci. Mater. Electron., 31, 14851 (2020); https://doi.org/10.1007/s10854-020-04047-6
A. Sivakumar, S.S.J. Dhas and S.A.M.B. Dhas, Solid State Sci., 107, 106340 (2020); https://doi.org/10.1016/j.solidstatesciences.2020.106340
K. Showrilu, C. Jyothirmai, A.R.N.L. Sirisha, A. Sivakumar, S.S.J. Dhas and S.A.M.B. Dhas , J. Mater. Sci. Mater. Electron., 32, 3903 (2021); https://doi.org/10.1007/s10854-020-05133-5
K. Vasu, H.S.S.R. Matte, S.N. Shirodkar, V. Jayaram, K.P.J. Reddy, U.V. Waghmare and C.N.R. Rao, Chem. Phys. Lett., 582, 105 (2013); https://doi.org/10.1016/j.cplett.2013.07.044
S. Aswathappa, L. Dai, S.J.D. Sathiyadhas, M.B.D.S. Amalapushpam, M. Vijayan, R.S. Kumar and A.I. Almansour, Ceram. Int., 50, 7418 (2024); https://doi.org/10.1016/j.ceramint.2023.12.028
E.K. Goharshadi, R. Mehrkhah and P. Nancarrow, Mater. Sci. Semicond. Process., 16, 356 (2013); https://doi.org/10.1016/j.mssp.2012.09.012
K.T. Al-Rasoul, I.M. Ibrahim, I.M. Ali and R.M. Al-Haddad, Int. J. Sci. Technol. Res., 3, 213 (2014).
M. Madkour, T. Salih, F. Al-Sagheer and A. Bumajdad, Opt. Mater. Express, 6, 2857 (2016); https://doi.org/10.1364/OME.6.002857
C. Ippen, T. Greco, Y. Kim, J. Kim, M.S. Oh, C.J. Han and A. Wedel, Org. Electron., 15, 126 (2014); https://doi.org/10.1016/j.orgel.2013.11.003
W. Zhang, S. Ding, W. Zhuang, D. Wu, P. Liu, X. Qu, H. Liu, H. Yang, Z. Wu, K. Wang and X.W. Sun, Adv. Funct. Mater., 30, 2005303 (2020); https://doi.org/10.1002/adfm.202005303
H. Kumar, A. Kumari and R.R. Singh, Opt. Mater., 69, 23 (2017); https://doi.org/10.1016/j.optmat.2017.04.009
R. Zhang, Y. Wang, M. Jia, J. Xu and E. Pan, Appl. Surf. Sci., 437, 375 (2018); https://doi.org/10.1016/j.apsusc.2017.12.110
T.I. Chanu, D. Samanta, A. Tiwari and S. Chatterjee, Appl. Surf. Sci., 391, 548 (2017); https://doi.org/10.1016/j.apsusc.2016.05.045
K. Komal, P. Shikha and T.S. Kang, New J. Chem., 41, 7407 (2017); https://doi.org/10.1039/C7NJ01373F
S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray and B.R. Ratna, Phys. Rev. B Condens. Matter, 60, 9191 (1999); https://doi.org/10.1103/PhysRevB.60.9191
S. Oviya, F.I. Maria Bincy, R.S. Kumar, P. Kannappan, I. Kim and S.A.M. Britto Dhas, Mater. Chem. Phys., 333, 130287 (2025); https://doi.org/10.1016/j.matchemphys.2024.130287
F.I.M. Bincy, S. Oviya, R.S. Kumar, P. Kanappan, I. kim and S.A.M.B. Dhas, J. Mater. Sci., 59, 7044 (2024); https://doi.org/10.1007/s10853-024-09574-9
S.L. Morelhão, S.W. Kycia, S. Netzke, C.I. Fornari, P.H.O. Rappl and E. Abramof, J. Phys. Chem. C, 123, 24818 (2019); https://doi.org/10.1021/acs.jpcc.9b05377
C.O. Ehi-Eromosele, B.I. Ita and E.E.J. Iweala, J. Sol-Gel Sci. Technol., 76, 298 (2015); https://doi.org/10.1007/s10971-015-3777-2
B. Azhdar, J. Exp. Nanosci., 18, 2276278 (2023); https://doi.org/10.1080/17458080.2023.2276278
Y. Sun, L. Wang, Y. Liu and Y. Ren, Small, 11, 300 (2015); https://doi.org/10.1002/smll.201400892
P.H. Le, C.-N. Liao, C.W. Luo and J. Leu, J. Alloys Compd., 615, 546 (2014); https://doi.org/10.1016/j.jallcom.2014.07.018
A. Sivakumar, S.S.J. Dhas, S. Balachandar and S.A.M.B. Dhas, J. Electron. Mater., 48, 7868 (2019); https://doi.org/10.1007/s11664-019-07605-9
Z.Y. Liu, J. Li, J.F. Zhang, J. Li, P.T. Yang, S. Zhang, G.F. Chen, Y. Uwatoko, H.X. Yang, Y. Sui, K. Liu and J.-G. Cheng, NPJ Quantum Mater., 6, 90 (2021); https://doi.org/10.1038/s41535-021-00393-8
A. Rita, A. Sivakumar and S.A.M.B. Dhas, J. Nanostruct. Chem., 9, 225 (2019); https://doi.org/10.1007/s40097-019-00313-0
X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando and D. Golberg, Prog. Mater. Sci., 56, 175 (2011); https://doi.org/10.1016/j.pmatsci.2010.10.001
S.B. Qadri, E.F. Skelton, A.D. Dinsmore, J.Z. Hu, W.J. Kim, C. Nelson and B.R. Ratna, J. Appl. Phys., 89, 115 (2001); https://doi.org/10.1063/1.1328066
H. Zhao, W. Liu, J. Zhu, X. Shen, L. Xiong, Y. Li, X. Li, J. Liu, R. Wang, C. Jin and R. Yu, High Press. Res., 35, 9 (2015); https://doi.org/10.1080/08957959.2014.996562
Y. Ji, L. Guo, H. Xu, J. Liu, X. Li, Y. Li, Z. Wu and P. Simon, Phys. Status Solidi, A Appl. Res., 198, 210 (2003); https://doi.org/10.1002/pssa.200306450
I. Yu, T. Isobe and M. Senna, J. Phys. Chem. Solids, 57, 373 (1996); https://doi.org/10.1016/0022-3697(95)00285-5
Y.L. Li, Y.H. Wang and J. Yun, Guangpuxue Yu Guangpu Fenxi, 27, 1890 (2007).
X.W. Zhao, S. Komuro, S. Fujita, H. Isshiki, Y. Aoyagi and T. Sugano, Mater. Sci. Eng. B, 51, 154 (1998); https://doi.org/10.1016/S0921-5107(97)00250-X
J. Borah, J. Barman and K.C. Sarma, Chalcogenide Lett., 5, 201 (2008).
A.P. Alivisatos, Nature, 271, 933 (1996); https://doi.org/10.1126/science.271.5251.933
S.H.A. Allehyani, R. Seoudi, D.A. Said, A.R. Lashin and A. Abouelsayed, J. Electr. Mater., 44, 4227 (2015); https://doi.org/10.1007/s11664-015-3974-3
A. Rai, P. Phogat, Shreya, R. Jha and S. Singh, MATEC Web Conf., 393, 01011 (2024); https://doi.org/10.1051/matecconf/202439301011
H. Tang, G. Xu, L. Weng, L. Pan and L. Wang, Acta Mater., 52, 1489 (2004); https://doi.org/10.1016/j.actamat.2003.11.030
Y. Li, Y. Ding, Y. Zhang and Y. Qian, J. Phys. Chem. Solids, 60, 13 (1999); https://doi.org/10.1016/S0022-3697(98)00247-9
A.E. Raevskaya, A.V. Korzhak, A.L. Stroyuk and S.Y. Kuchmii, Theor. Exp. Chem., 41, 111 (2005); https://doi.org/10.1007/s11237-005-0029-5
A.M. Al-Baradi, M.M. El-Nahass, M.M.A. El-Raheem, A.A. Atta and A.M. Hassanien, Radiat. Phys. Chem., 103, 227 (2014); https://doi.org/10.1016/j.radphyschem.2014.05.055
Z. Li, B. Liu, S. Yu, J. Wang, Q. Li, B. Zou, T. Cui, Z. Liu, Z. Chen and J. Liu, J. Phys. Chem. C, 115, 357 (2011); https://doi.org/10.1021/jp107304v
Z. Li, J. Wang, B. Liu and J. Liu, J. Phys. Chem. C, 120, 781 (2016); https://doi.org/10.1021/acs.jpcc.5b11195
V.D. Mote and B.N. Dole, J. Mater. Sci. Mater. Electron., 32, 420 (2021); https://doi.org/10.1007/s10854-020-04790-w
S. Atroshenko, A. Divakov, Y. Meshcheryakov and N. Naumova, Mater. Sci. Forum, 794, 755 (2014); https://doi.org/10.4028/www.scientific.net/MSF.794-796.755
D. Raabe, Recovery and Recrystallization: Phenomena, Physics, Models, Simulation, In: Physical Metallurgy, Elsevier edn. 5, pp. 2291–2397 (2014).
A.A. El-Fadl and A.M. Nashaat, Radiat. Eff. Defects Solids, 170, 863 (2015); https://doi.org/10.1080/10420150.2015.1123259
M.A. Gaffar and A. Abu El-Fadl, Cryst. Res. Technol., 34, 915 (1999); https://doi.org/10.1002/(SICI)1521-4079(199908)34:7<915::AID-CRAT915>3.0.CO;2-W
F. Wang, M. Tan, C. Li, C. Niu, X. Zhao, Org. Electron., 67, 89 (2019); https://doi.org/10.1016/j.orgel.2019.01.003
R. Sreekumar, R. Jayakrishnan, C. Sudha Kartha, K.P. Vijayakumar, S.A. Khan and D.K. Avasthi, J. Appl. Phys., 103, 23709 (2008); https://doi.org/10.1063/1.2829812
N. Puri, K.R. Gupta, N.C. Mehra, R.P. Tandon and A.K. Mahapatro, Integr. Ferroelectr., 184, 9 (2017); https://doi.org/10.1080/10584587.2017.1368630
X. Ren, X. Yan, A.S. Ahmad, H. Cheng, Y. Li, Y. Zhao, L. Wang and S. Wang, J. Phys. Chem. C, 123, 15204 (2019); https://doi.org/10.1021/acs.jpcc.9b02854
X. Ren, X. Yan, A.S. Ahmad, H. Cheng, Y. Li, Y. Zhao, L. Wang and S. Wang, Chalcogenide Lett., 5, 297 (2008); https://doi.org/10.1021/acs.jpcc.9b02854
Y. Kanemitsu, Y. Ishida, I. Nakada and H. Kuroda, Appl. Phys. Lett., 48, 209 (1986); https://doi.org/10.1063/1.96797
M.N. Siddique, T. Ali, A. Ahmed and P. Tripathi, Nano-Object., 16, 156 (2018); https://doi.org/10.1016/j.nanoso.2018.06.001
A. Sivakumar, A. Saranraj, S. Sahaya Jude Dhas, M. Jose and S.A. Martin Britto Dhas, Opt. Eng., 58, 077104 (2019); https://doi.org/10.1117/1.OE.58.7.077104
L. Li, J. Hu, W. Yang and A.P. Alivisatos, Nano Lett., 1, 349 (2001); https://doi.org/10.1021/nl015559r
O.L. Stroyuk, V.M. Dzhagan, V.V. Shvalagin and S.Y. Kuchmiy, J. Phys. Chem. C, 114, 220 (2010); https://doi.org/10.1021/jp908879h
H.C. Liao, M.C. Wu, M.H. Jao, C.M. Chuang, Y.F. Chen and W.F. Su, CrystEngComm, 14, 3645 (2012); https://doi.org/10.1039/c2ce06154f
W.M. Linhart, S.J. Zelewski, P. Scharoch, F. Dybala and R. Kudrawiec, J. Mater. Chem. C Mater. Opt. Electron. Devices, 9, 13733 (2021); https://doi.org/10.1039/D1TC03625D
Z. Amara, M. Khadraoui, R. Miloua, M.N. Amroun and K. Sahraoui, J. Optoelectron. Adv. Mater., 22, 163 (2020).
X.T. Zhou, P.-S.G. Kim, T.K. Sham and S.T. Lee, J. Appl. Phys., 98, 024312 (2005); https://doi.org/10.1063/1.1988974
S. Naseem Shah, S. Rizwan Ali, S. Qaseem, Yasmeen Bibi, U. Majeed, S. Masood, J Nanoscope, 3, 1 (2022); https://doi.org/10.52700/jn.v3i1
A.K. Kole and P. Kumbhakar, Appl. Nanosci., 2, 15 (2012); https://doi.org/10.1007/s13204-011-0036-x
C. Ye, X. Fang, G. Li and L. Zhang, Appl. Phys. Lett., 85, 3035 (2004); https://doi.org/10.1063/1.1807018
C.S. Tiwary, P. Kumbhakar, A.K. Mondal and A.K. Mitra, Phys. Status Solidi., A Appl. Mater. Sci., 207, 1874 (2010); https://doi.org/10.1002/pssa.200925341
D. Denzler, M. Olschewski and K. Sattler, J. Appl. Phys., 84, 2841 (1998); https://doi.org/10.1063/1.368425
K.A. Bhabu, J. Theerthagiri, J. Madhavan, T. Balu, G. Muralidharan and T.R. Rajasekaran, J. Mater. Sci. Mater. Electron., 27, 10980 (2016); https://doi.org/10.1007/s10854-016-5214-x
C. Mrabet, M. Ben Amor, A. Boukhachem, M. Amlouk and T. Manoubi, Ceram. Int., 42, 5963 (2016); https://doi.org/10.1016/j.ceramint.2015.12.144