Copyright (c) 2025 SK Basiruddin Blue

This work is licensed under a Creative Commons Attribution 4.0 International License.
Gold Nanoparticles: Synthesis, Mechanism and Applications as Colorimetric Metal Ions Sensor
Corresponding Author(s) : SK Basiruddin
Asian Journal of Chemistry,
Vol. 37 No. 7 (2025): Vol 37 Issue 7, 2025
Abstract
The environment, consist of the lithosphere, atmosphere, hydrosphere and biosphere, is gradually threatened by various pollutants, among which heavy metal ions pose significant ecological and health risks. Natural phenomena in everyday life contribute to metal ion contamination in the environment. Prolonged exposure to heavy metals can cause severe health issues, including neurological disorders, organ damage and increased cancer risk. Hence, the development of sensitive, selective and efficient detection probes for metal ions, especially in aqueous media, is essential. Gold nanomaterials have gained importance as promising sensors due to their unique size-dependent optical, electronic and chemical properties. Their strong localized surface plasmon resonance (LSPR), high surface-to-volume ratio and ease of functionalization make them excellent candidates for colorimetric of metal ions. This review emphasize on the application of functionalized and label-free gold nanoparticles for metal ion detection. Recent advances and examples from the literature show that these nanoprobes are effective for environmental monitoring, and we cover their production, surface modification strategies and sensing processes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.H. Walker, R.M. Sibly and D.B. Peakall, Principles of Ecotoxicology. CRC Press: London (2005).
- V. Masindi and K.L. Muedi, in eds.: H. El-Din M. Saleh and R.F. Aglan, Environmental Contamination by Heavy Metals, In: Heavy Metals, IntechOpen (2018); https://doi.org/10.5772/intechopen.76082
- Y.E. Martin and E.A. Johnson, Prog. Phys. Geogr., 36, 833 (2012); https://doi.org/10.1177/0309133312457107
- S. Shallari, C. Schwartz, A. Hasko and J.L. Morel, Sci. Total Environ., 209, 133 (1998); https://doi.org/10.1016/S0048-9697(98)80104-6
- N. Herawati, S. Suzuki, K. Hayashi, I.F. Rivai and H. Koyama, Bull. Environ. Contam. Toxicol., 64, 33 (2000); https://doi.org/10.1007/s001289910006
- M. Valko, H. Morris and M. Cronin, Curr. Med. Chem., 12, 1161 (2005); https://doi.org/10.2174/0929867053764635
- J. Risher, Toxicological profile for mercury, (1999); https://doi.org/10.1177/074823379901500504
- M. Faraday, Philos. Trans. R. Soc. Lond., 147, 145 (1857); https://doi.org/10.1098/rstl.1857.0011
- M.C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004); https://doi.org/10.1021/cr030698+
- L. Guerrini and D. Graham, Chem. Soc. Rev., 41, 7085 (2012); https://doi.org/10.1039/c2cs35118h
- L.M. Liz-Marzán, Mater. Today, 7, 26 (2004); https://doi.org/10.1016/S1369-7021(04)00080-X
- S. Zhu, X. Wang, Y. Cong and L. Li, ACS Omega, 5, 22702 (2020); https://doi.org/10.1021/acsomega.0c03218
- K. Saha, S.S. Agasti, C. Kim, X. Li and V.M. Rotello, Chem. Rev., 112, 2739 (2012); https://doi.org/10.1021/cr2001178
- Z. Guo, G. Yu, Z. Zhang, Y. Han, G. Guan, W. Yang and M.Y. Han, Adv. Mater., 35, 2206700 (2023); https://doi.org/10.1002/adma.202206700
- P.K. Jain, X.H. Huang, I.H. El-Sayed and M.A. El-Sayed, Acc. Chem. Res., 41, 1578 (2008); https://doi.org/10.1021/ar7002804
- C.J. Murphy, A.M. Gole, J.W. Stone, P.N. Sisco, A.M. Alkilani, E.C. Goldsmith and S.C. Baxter, Acc. Chem. Res., 41, 1721 (2008); https://doi.org/10.1021/ar800035u
- V.A. Dhumale, R.K. Gangwar and N. Pande, Mater. Res. Innov., 25, 354 (2021); https://doi.org/10.1080/14328917.2020.1825770
- J. Turkevich, P.C. Stevenson and J. Hillier, Discuss. Faraday Soc., 11, 55 (1951); https://doi.org/10.1039/df9511100055
- B.V. Enustun and J. Turkevich, J. Am. Chem. Soc., 85, 3317 (1963); https://doi.org/10.1021/ja00904a001
- S.K. Sivaraman, S. Kumar and V. Santhanam, J. Colloid Interface Sci., 361, 543 (2011); https://doi.org/10.1016/j.jcis.2011.06.015
- Y. Niidome, K. Nishioka, H. Kawasaki and S. Yamada, Chem. Commun., 2376 (2003); https://doi.org/10.1039/B307836A
- Y. Shao, Y. Jin and S. Dong, Chem. Commun., 1104 (2004); https://doi.org/10.1039/b315732f
- D.V. Goia and E. Matijevic, New J. Chem., 22, 1203 (1998); https://doi.org/10.1039/a709236i
- N.R. Jana, L. Gearheart and C.J. Murphy, Chem. Mater., 12, 1389 (2001); https://doi.org/10.1002/1521-4095(200109)13:18%3C1389:AID-ADMA1389%3E3.0.CO;2-F
- M. Brust, M. Walker, W. Bethell, D.J. Schriffin and R. Whyman, J. Chem. Soc., 7, 801 (1994); https://doi.org/10.1039/C39940000801
- M. Giersig and P. Mulvaney, Langmuir, 9, 3408 (1993); https://doi.org/10.1021/la00036a014
- C.A. Waters, A.J. Mills, K.A. Johnson and D.J. Schriffin, Chem. Commun., 540 (2003); https://doi.org/10.1039/b211874b
- C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi and T. Li, J. Phys. Chem. B, 109, 13857 (2005); https://doi.org/10.1021/jp0516846
- B.L.V. Prasad, S.I. Stoeva, C.M. Sorensen and K.J. Klabunde, Langmuir, 18, 7515 (2002); https://doi.org/10.1021/la020181d
- B.L.V. Prasad, S.I. Stoeva, C.M. Sorensen and K.J. Klabunde, Chem. Mater., 15, 935 (2003); https://doi.org/10.1021/cm0206439
- S. Stoeva, K.J. Klabunde, C.M. Sorensen and I. Dragieva, J. Am. Chem. Soc., 124, 2305 (2002); https://doi.org/10.1021/ja012076g
- X.M. Lin, C.M. Sorensen and K.J. Klabunde, J. Nano Res., 2, 157 (2000); https://doi.org/10.1023/A:1010078521951
- J.H. Lee, S.U.S. Choi and S.Y. Lee, Nanoscale Res. Lett., 7, 420 (2012); https://doi.org/10.1186/1556-276X-7-420
- D. Radzuik, D. Grigoriv, W. Zhang, D. Su, H. Mohwald and D. Shchukin, J. Phys. Chem. C, 114, 1835 (2010); https://doi.org/10.1021/jp910374s
- Y.C. Liu, L.H. Lin and W.H. Chiu, J. Phys. Chem. B, 108, 19237 (2004); https://doi.org/10.1021/jp046866z
- S. Kundu, L. Peng and H. Liang, Inorg. Chem., 47, 6344 (2008); https://doi.org/10.1021/ic8004135
- C.G. Wing, R. Esparza, C.V. Hernandez, M.E. Fernandez Garcia and M.J. Yacaman, Nanoscale, 4, 2281 (2012); https://doi.org/10.1039/c2nr12053d
- F. Mafune, J.Y. Kohno, Y. Takeda and T. Kondow, J. Phys. Chem. B, 105, 5114 (2001); https://doi.org/10.1021/jp0037091
- D. Riabinina, J. Zhang, M. Chaker, J. Margot and D. Ma, ISRN Nanotechnology, 2012, 2978635 (2012); https://doi.org/10.5402/2012/297863
- T. Ahmad, I.A. Wani, I.H. Lone, A. Ganguly, N. Manzoor, A. Ahmad, J. Ahmed and A.S. Al Shihri, Mater. Res. Bull., 48, 12 (2013); https://doi.org/10.1016/j.materresbull.2012.09.069
- Ma. H, B. Yin, S. Wang, Y. Jiao, W. Pan, S. Huang, S. Chen and F. Meng, ChemPhysChem, 5, 68 (2004); https://doi.org/10.1002/cphc.200300900
- A. David, W. Fleming and M.E. Williams, Langmuir, 20, 3021 (2004); https://doi.org/10.1021/la0362829
- S.J. Amina and B. Guo, Int. J. Nanomedicine, 15, 9823 (2020); https://doi.org/10.2147/IJN.S279094
- X. Li, H. Xu, Z.-S. Chen and G. Chen, J. Nanomater., 1, 270974 (2011); https://doi.org/10.1155/2011/270974
- M. Ovais, A.T. Khalil, N.U. Islam, I. Ahmad, M. Ayaz, M. Saravanan, Z.K. Shinwari and S, Mukherjee, Appl. Microbiol. Biotechnol. 102, 6799, (2018); https://doi.org/10.1007/s00253-018-9146-7
- K.X. Lee, K. Shameli, Y.P. Yew, S.-Y. Teow, H. Jahangirian, R. Rafiee-Moghaddam and T.J. Webster, Int. J. Nanomedicine, 15, 275 (2020); https://doi.org/10.2147/IJN.S233789
- J. Santhosh Kumar, S. Rajeshkumar and S.V. Kumar, Biochem. Biophys. Rep., 11, 46 (2017); https://doi.org/10.1016/j.bbrep.2017.06.004
- X. Wang, X. Wang, J. Liu, K. Wang, R. Zhao and S. Yang, Microchem. J., 159, 105359 (2020); https://doi.org/10.1016/j.microc.2020.105359
- J.R. Bhamore, A.R. Gul, S.K. Kailasa, K.W. Kim, J.S. Lee, H. Park and T.J. Park, Sens. Actuators B Chem., 334, 129685 (2021); https://doi.org/10.1016/j.snb.2021.129685
- H. Erdogan, Düzce Üniv. Bilim Teknol. Dergisi, 9, 1469 (2021); https://doi.org/10.29130/dubited.884511
- B.G. Star, N. Haghnazari and C. Karami Passer, J. Basic Appl. Sci., 3, 114 (2021); https://doi.org/10.24271/psr.23
- R. Zhu, J. Song, Y. Zhou, P. Lei, Z. Li, H.W. Li, S. Shuang and C. Dong, Talanta, 204, 294 (2019); https://doi.org/10.1016/j.talanta.2019.05.085
- F. Amourizi, K. Dashtian and M. Ghaedi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 230, 118026 (2020); https://doi.org/10.1016/j.saa.2020.118026
- Z. Zhang, X. Ye, Q. Liu, Y. Liu and R. Liu, J. Anal. Sci. Technol., 11, 1 (2020); https://doi.org/10.1186/s40543-020-00209-7
- S. Megarajan, R.K. Kamlekar and V. Anbazhagan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 239, 118485 (2020); https://doi.org/10.1016/j.saa.2020.118485
- M.P. Desai, R.V. Patil, S.S. Harke and K.D. Pawar, J. Cluster Sci., 32, 341 (2021); https://doi.org/10.1007/s10876-020-01793-9
- J. Wang, J. Wu, Y. Zhang, X. Zhou, Z. Hu, X. Liao, B. Sheng, K. Yuan, X. Wu, H. Cai, H. Zhou and P. Sun, Sens. Actuators B Chem., 330, 129364 (2021); https://doi.org/10.1016/j.snb.2020.129364
- K. Shrivas, S. Patel, D. Sinha, S.S. Thakur, T.K. Patle, T. Kant, K. Dewangan, M.L. Satnami, J. Nirmalkar and S. Kumar, Mikrochim. Acta, 187, 1 (2020); https://doi.org/10.1007/s00604-020-4129-7
- L. Mao, Q. Wang, Y. Luo and Y. Gao, Talanta, 222, 121506 (2021); https://doi.org/10.1016/j.talanta.2020.121506
- R. Meena, V.N. Mehta, J.R. Bhamore, P.T. Rao, T.J. Park and S.K. Kailasa, J. Mol. Liq., 312, 113409 (2020); https://doi.org/10.1016/j.molliq.2020.113409
- M. Mao, R. Zheng, C.F. Peng and X.L. Wei, Biosensors, 10, 211 (2020); https://doi.org/10.3390/bios10120211
- J. Li, B. Zheng, Z. Zheng, Y. Li and J. Wang, Sens. Actuators Rep., 2, 100013 (2020); https://doi.org/10.1016/j.snr.2020.100013
- L. Nadav, O.R. Tsion and Z. Oer, Talanta, 208, 120370 (2020); https://doi.org/10.1016/j.talanta.2019.120370
- T.T.T. Ho, C.H. Dang, T.K. Huynh, T.K.D. Hoang and T.D. Nguyen, Carbohydr. Polym., 251, 116998 (2021); https://doi.org/10.1016/j.carbpol.2020.116998
- Y. Gan, T. Liang, Q. Hu, L. Zhong, X. Wang, H. Wan and P. Wang, Talanta, 208, 120231 (2020); https://doi.org/10.1016/j.talanta.2019.120231
- M.R. Kateshiya, G. George, J.V. Rohit, N.I. Malek and S.K. Kailasa, Microchem. J., 158, 105212 (2020); https://doi.org/10.1016/j.microc.2020.105212
- B. Zheng, J. Li, Z. Zheng, C. Zhang, C. Huang, J. Hong, Y. Li and J. Wang, Opt. Laser Technol., 133, 106522 (2021); https://doi.org/10.1016/j.optlastec.2020.106522
- N. Garg, S. Bera and A. Ballal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 228, 117701 (2020); https://doi.org/10.1016/j.saa.2019.117701
- Y. Wang, Y. Xue, P. Gao, B.X. Dou and J.Y. Xin, Mater. Express, 10, 190 (2020); https://doi.org/10.1166/mex.2020.1627
References
C.H. Walker, R.M. Sibly and D.B. Peakall, Principles of Ecotoxicology. CRC Press: London (2005).
V. Masindi and K.L. Muedi, in eds.: H. El-Din M. Saleh and R.F. Aglan, Environmental Contamination by Heavy Metals, In: Heavy Metals, IntechOpen (2018); https://doi.org/10.5772/intechopen.76082
Y.E. Martin and E.A. Johnson, Prog. Phys. Geogr., 36, 833 (2012); https://doi.org/10.1177/0309133312457107
S. Shallari, C. Schwartz, A. Hasko and J.L. Morel, Sci. Total Environ., 209, 133 (1998); https://doi.org/10.1016/S0048-9697(98)80104-6
N. Herawati, S. Suzuki, K. Hayashi, I.F. Rivai and H. Koyama, Bull. Environ. Contam. Toxicol., 64, 33 (2000); https://doi.org/10.1007/s001289910006
M. Valko, H. Morris and M. Cronin, Curr. Med. Chem., 12, 1161 (2005); https://doi.org/10.2174/0929867053764635
J. Risher, Toxicological profile for mercury, (1999); https://doi.org/10.1177/074823379901500504
M. Faraday, Philos. Trans. R. Soc. Lond., 147, 145 (1857); https://doi.org/10.1098/rstl.1857.0011
M.C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004); https://doi.org/10.1021/cr030698+
L. Guerrini and D. Graham, Chem. Soc. Rev., 41, 7085 (2012); https://doi.org/10.1039/c2cs35118h
L.M. Liz-Marzán, Mater. Today, 7, 26 (2004); https://doi.org/10.1016/S1369-7021(04)00080-X
S. Zhu, X. Wang, Y. Cong and L. Li, ACS Omega, 5, 22702 (2020); https://doi.org/10.1021/acsomega.0c03218
K. Saha, S.S. Agasti, C. Kim, X. Li and V.M. Rotello, Chem. Rev., 112, 2739 (2012); https://doi.org/10.1021/cr2001178
Z. Guo, G. Yu, Z. Zhang, Y. Han, G. Guan, W. Yang and M.Y. Han, Adv. Mater., 35, 2206700 (2023); https://doi.org/10.1002/adma.202206700
P.K. Jain, X.H. Huang, I.H. El-Sayed and M.A. El-Sayed, Acc. Chem. Res., 41, 1578 (2008); https://doi.org/10.1021/ar7002804
C.J. Murphy, A.M. Gole, J.W. Stone, P.N. Sisco, A.M. Alkilani, E.C. Goldsmith and S.C. Baxter, Acc. Chem. Res., 41, 1721 (2008); https://doi.org/10.1021/ar800035u
V.A. Dhumale, R.K. Gangwar and N. Pande, Mater. Res. Innov., 25, 354 (2021); https://doi.org/10.1080/14328917.2020.1825770
J. Turkevich, P.C. Stevenson and J. Hillier, Discuss. Faraday Soc., 11, 55 (1951); https://doi.org/10.1039/df9511100055
B.V. Enustun and J. Turkevich, J. Am. Chem. Soc., 85, 3317 (1963); https://doi.org/10.1021/ja00904a001
S.K. Sivaraman, S. Kumar and V. Santhanam, J. Colloid Interface Sci., 361, 543 (2011); https://doi.org/10.1016/j.jcis.2011.06.015
Y. Niidome, K. Nishioka, H. Kawasaki and S. Yamada, Chem. Commun., 2376 (2003); https://doi.org/10.1039/B307836A
Y. Shao, Y. Jin and S. Dong, Chem. Commun., 1104 (2004); https://doi.org/10.1039/b315732f
D.V. Goia and E. Matijevic, New J. Chem., 22, 1203 (1998); https://doi.org/10.1039/a709236i
N.R. Jana, L. Gearheart and C.J. Murphy, Chem. Mater., 12, 1389 (2001); https://doi.org/10.1002/1521-4095(200109)13:18%3C1389:AID-ADMA1389%3E3.0.CO;2-F
M. Brust, M. Walker, W. Bethell, D.J. Schriffin and R. Whyman, J. Chem. Soc., 7, 801 (1994); https://doi.org/10.1039/C39940000801
M. Giersig and P. Mulvaney, Langmuir, 9, 3408 (1993); https://doi.org/10.1021/la00036a014
C.A. Waters, A.J. Mills, K.A. Johnson and D.J. Schriffin, Chem. Commun., 540 (2003); https://doi.org/10.1039/b211874b
C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi and T. Li, J. Phys. Chem. B, 109, 13857 (2005); https://doi.org/10.1021/jp0516846
B.L.V. Prasad, S.I. Stoeva, C.M. Sorensen and K.J. Klabunde, Langmuir, 18, 7515 (2002); https://doi.org/10.1021/la020181d
B.L.V. Prasad, S.I. Stoeva, C.M. Sorensen and K.J. Klabunde, Chem. Mater., 15, 935 (2003); https://doi.org/10.1021/cm0206439
S. Stoeva, K.J. Klabunde, C.M. Sorensen and I. Dragieva, J. Am. Chem. Soc., 124, 2305 (2002); https://doi.org/10.1021/ja012076g
X.M. Lin, C.M. Sorensen and K.J. Klabunde, J. Nano Res., 2, 157 (2000); https://doi.org/10.1023/A:1010078521951
J.H. Lee, S.U.S. Choi and S.Y. Lee, Nanoscale Res. Lett., 7, 420 (2012); https://doi.org/10.1186/1556-276X-7-420
D. Radzuik, D. Grigoriv, W. Zhang, D. Su, H. Mohwald and D. Shchukin, J. Phys. Chem. C, 114, 1835 (2010); https://doi.org/10.1021/jp910374s
Y.C. Liu, L.H. Lin and W.H. Chiu, J. Phys. Chem. B, 108, 19237 (2004); https://doi.org/10.1021/jp046866z
S. Kundu, L. Peng and H. Liang, Inorg. Chem., 47, 6344 (2008); https://doi.org/10.1021/ic8004135
C.G. Wing, R. Esparza, C.V. Hernandez, M.E. Fernandez Garcia and M.J. Yacaman, Nanoscale, 4, 2281 (2012); https://doi.org/10.1039/c2nr12053d
F. Mafune, J.Y. Kohno, Y. Takeda and T. Kondow, J. Phys. Chem. B, 105, 5114 (2001); https://doi.org/10.1021/jp0037091
D. Riabinina, J. Zhang, M. Chaker, J. Margot and D. Ma, ISRN Nanotechnology, 2012, 2978635 (2012); https://doi.org/10.5402/2012/297863
T. Ahmad, I.A. Wani, I.H. Lone, A. Ganguly, N. Manzoor, A. Ahmad, J. Ahmed and A.S. Al Shihri, Mater. Res. Bull., 48, 12 (2013); https://doi.org/10.1016/j.materresbull.2012.09.069
Ma. H, B. Yin, S. Wang, Y. Jiao, W. Pan, S. Huang, S. Chen and F. Meng, ChemPhysChem, 5, 68 (2004); https://doi.org/10.1002/cphc.200300900
A. David, W. Fleming and M.E. Williams, Langmuir, 20, 3021 (2004); https://doi.org/10.1021/la0362829
S.J. Amina and B. Guo, Int. J. Nanomedicine, 15, 9823 (2020); https://doi.org/10.2147/IJN.S279094
X. Li, H. Xu, Z.-S. Chen and G. Chen, J. Nanomater., 1, 270974 (2011); https://doi.org/10.1155/2011/270974
M. Ovais, A.T. Khalil, N.U. Islam, I. Ahmad, M. Ayaz, M. Saravanan, Z.K. Shinwari and S, Mukherjee, Appl. Microbiol. Biotechnol. 102, 6799, (2018); https://doi.org/10.1007/s00253-018-9146-7
K.X. Lee, K. Shameli, Y.P. Yew, S.-Y. Teow, H. Jahangirian, R. Rafiee-Moghaddam and T.J. Webster, Int. J. Nanomedicine, 15, 275 (2020); https://doi.org/10.2147/IJN.S233789
J. Santhosh Kumar, S. Rajeshkumar and S.V. Kumar, Biochem. Biophys. Rep., 11, 46 (2017); https://doi.org/10.1016/j.bbrep.2017.06.004
X. Wang, X. Wang, J. Liu, K. Wang, R. Zhao and S. Yang, Microchem. J., 159, 105359 (2020); https://doi.org/10.1016/j.microc.2020.105359
J.R. Bhamore, A.R. Gul, S.K. Kailasa, K.W. Kim, J.S. Lee, H. Park and T.J. Park, Sens. Actuators B Chem., 334, 129685 (2021); https://doi.org/10.1016/j.snb.2021.129685
H. Erdogan, Düzce Üniv. Bilim Teknol. Dergisi, 9, 1469 (2021); https://doi.org/10.29130/dubited.884511
B.G. Star, N. Haghnazari and C. Karami Passer, J. Basic Appl. Sci., 3, 114 (2021); https://doi.org/10.24271/psr.23
R. Zhu, J. Song, Y. Zhou, P. Lei, Z. Li, H.W. Li, S. Shuang and C. Dong, Talanta, 204, 294 (2019); https://doi.org/10.1016/j.talanta.2019.05.085
F. Amourizi, K. Dashtian and M. Ghaedi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 230, 118026 (2020); https://doi.org/10.1016/j.saa.2020.118026
Z. Zhang, X. Ye, Q. Liu, Y. Liu and R. Liu, J. Anal. Sci. Technol., 11, 1 (2020); https://doi.org/10.1186/s40543-020-00209-7
S. Megarajan, R.K. Kamlekar and V. Anbazhagan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 239, 118485 (2020); https://doi.org/10.1016/j.saa.2020.118485
M.P. Desai, R.V. Patil, S.S. Harke and K.D. Pawar, J. Cluster Sci., 32, 341 (2021); https://doi.org/10.1007/s10876-020-01793-9
J. Wang, J. Wu, Y. Zhang, X. Zhou, Z. Hu, X. Liao, B. Sheng, K. Yuan, X. Wu, H. Cai, H. Zhou and P. Sun, Sens. Actuators B Chem., 330, 129364 (2021); https://doi.org/10.1016/j.snb.2020.129364
K. Shrivas, S. Patel, D. Sinha, S.S. Thakur, T.K. Patle, T. Kant, K. Dewangan, M.L. Satnami, J. Nirmalkar and S. Kumar, Mikrochim. Acta, 187, 1 (2020); https://doi.org/10.1007/s00604-020-4129-7
L. Mao, Q. Wang, Y. Luo and Y. Gao, Talanta, 222, 121506 (2021); https://doi.org/10.1016/j.talanta.2020.121506
R. Meena, V.N. Mehta, J.R. Bhamore, P.T. Rao, T.J. Park and S.K. Kailasa, J. Mol. Liq., 312, 113409 (2020); https://doi.org/10.1016/j.molliq.2020.113409
M. Mao, R. Zheng, C.F. Peng and X.L. Wei, Biosensors, 10, 211 (2020); https://doi.org/10.3390/bios10120211
J. Li, B. Zheng, Z. Zheng, Y. Li and J. Wang, Sens. Actuators Rep., 2, 100013 (2020); https://doi.org/10.1016/j.snr.2020.100013
L. Nadav, O.R. Tsion and Z. Oer, Talanta, 208, 120370 (2020); https://doi.org/10.1016/j.talanta.2019.120370
T.T.T. Ho, C.H. Dang, T.K. Huynh, T.K.D. Hoang and T.D. Nguyen, Carbohydr. Polym., 251, 116998 (2021); https://doi.org/10.1016/j.carbpol.2020.116998
Y. Gan, T. Liang, Q. Hu, L. Zhong, X. Wang, H. Wan and P. Wang, Talanta, 208, 120231 (2020); https://doi.org/10.1016/j.talanta.2019.120231
M.R. Kateshiya, G. George, J.V. Rohit, N.I. Malek and S.K. Kailasa, Microchem. J., 158, 105212 (2020); https://doi.org/10.1016/j.microc.2020.105212
B. Zheng, J. Li, Z. Zheng, C. Zhang, C. Huang, J. Hong, Y. Li and J. Wang, Opt. Laser Technol., 133, 106522 (2021); https://doi.org/10.1016/j.optlastec.2020.106522
N. Garg, S. Bera and A. Ballal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 228, 117701 (2020); https://doi.org/10.1016/j.saa.2019.117701
Y. Wang, Y. Xue, P. Gao, B.X. Dou and J.Y. Xin, Mater. Express, 10, 190 (2020); https://doi.org/10.1166/mex.2020.1627