Copyright (c) 2025 Chandima Shashikala Kumari Rajapakse, Didula Alwis, Rajith Perera

This work is licensed under a Creative Commons Attribution 4.0 International License.
Calamondin Peel Waste-Derived Activated Carbon as a Biosorbent for Heavy Metal Removal from Aqueous Solutions
Corresponding Author(s) : C.S.K. Rajapakse
Asian Journal of Chemistry,
Vol. 37 No. 7 (2025): Vol 37 Issue 7, 2025
Abstract
This research focused on utilizing agricultural waste, calamondin (Citrus madurensis) peel, to produce low-cost calamondin peel-based activated carbon (CPAC), initially for Pb(II) ion removal from simulated water. CPAC, prepared by carbonizing chemically treated peel waste at 400 ºC for 120 min, achieved 99% Pb(II) removal under optimized conditions: 5 ppm initial Pb(II) concentration, 0.03 g adsorbent dosage, 20 min shaking time at pH 7. Isotherm studies confirmed chemisorption, with a maximum adsorption capacity of 10.63 mg/g. Furthermore, CPAC demonstrated a removal efficiency of 31.01% to 49.29% for Cd, Cr, Cu, Mn and Zn in water samples collected from the Kelani river, Sri Lanka. These findings emphasize the viability of CPAC as a cost-effective, environmentally sustainable adsorbent for the remediation of heavy metal-laden water, thereby advancing sustainable waste management and environmental remediation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011
- R.A. Perera, R.T. Perera and C.S.K. Rajapakse, Chem. Chem. Technol., 17, 903 (2023); https://doi.org/10.23939/chcht17.04.903
- S.S. Fiyadh, M.A. AlSaadi, W.Z. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S. Mohd, L.S. Hin and A. El-Shafie, J. Clean. Prod., 230, 783 (2019); https://doi.org/10.1016/j.jclepro.2019.05.154
- A. Demirbas, J. Hazard. Mater., 157, 220 (2008); https://doi.org/10.1016/j.jhazmat.2008.01.024
- A. Bhatnagar, W. Hogland, M. Marques and M. Sillanpää, Chem. Eng. J., 219, 499 (2013); https://doi.org/10.1016/j.cej.2012.12.038
- J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla and M. Sánchez-Polo, J. Environ. Manage. 85, 833 (2007); https://doi.org/10.1016/j.jenvman.2007.07.031
- A. Jusoh, L. Su-Shiung, N. Ali and M.J.M.M. Noor, Desalination, 206, 9 (2007); https://doi.org/10.1016/j.desal.2006.04.048
- A. Jadhav and G. Mohanraj, Chem. Chem. Technol., 10, 201 (2016); https://doi.org/10.23939/chcht10.02.201
- H. A. Hegazi, HBRC J., 9, 276 (2013); https://doi.org/10.1016/j.hbrcj.2013.08.004
- F.O. Afolabi and P. Musonge, Molecules, 28, 7050 (2023); https://doi.org/10.3390/molecules28207050
- F.O. Afolabi, P. Musonge and B.F. Bakare, Pol. J. Environ. Stud., 30, 1487 (2021); https://doi.org/10.15244/pjoes/122449
- S. Ranganna, V.S. Govindarajan, K.V.R. Ramana and J.F. Kefford, CRC Crit. Rev. Food Sci. Nutr., 18, 313 (1983); https://doi.org/10.1080/10408398309527366
- A. Eleryan, M. Yýlmaz, M.A. El-Nemr, S. Ragab, M. Helal, M.A. Hassaan and A. El Nemr, Sci. Rep., 12, 17797 (2022); https://doi.org/10.1038/s41598-022-22359-x
- D. Racero-Galaraga, J.D. Rhenals-Julio, S. Sofan-German, J.M. Mendoza and A. Bula-Silvera, Results Chem., 12, 101886 (2024); https://doi.org/10.1016/j.rechem.2024.101886
- J.C Igwe and A.A. Abia, Ecletica Quim., 32, 33 (2007); https://doi.org/10.1590/S0100-46702007000100005
- A.B. Pérez Marín, M.I. Aguilar, J.F. Ortuño, V.F. Meseguer, J. Sáez and M. Lloréns, J. Chem. Technol. Biotechnol., 85, 1310 (2010); https://doi.org/10.1002/jctb.2432
- E.N. El Qada, S.J. Allen and G.M. Walker, Ind. Eng. Chem. Res., 45, 6044 (2006); https://doi.org/10.1021/ie060289e
- L.P. Cruz-Lopes, M. Macena, B. Esteves and R.P.F. Guiné, Open Agric., 6, 115 (2021); https://doi.org/10.1515/opag-2021-0225
- S. Nethaji, A. Sivasamy and A.B. Mandal, Int. J. Environ. Sci. Technol., 10, 231 (2013); https://doi.org/10.1007/s13762-012-0112-0
- B.B. Uzun, E. Apaydin-Varol, F. Ates, N. Özbay and A.E. Pütün, Fuel, 89, 176 (2010); https://doi.org/10.1016/j.fuel.2009.08.040
- W.C.S. Wanasinghe, M.H.J.P. Gunarathna, H.M.P.I.K. Herath and G.Y. Jayasinghe, Sabaragamuwa Univ. J., 16, 17 (2018); https://doi.org/10.4038/suslj.v16i1.7714
- Water-Quality-Salinity-Standards, Accessed: July 22, 2024; https://mrccc.org.au/wp-content/uploads/2013/10/Water-Quality-Salinity-Standards.pdf
References
F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011
R.A. Perera, R.T. Perera and C.S.K. Rajapakse, Chem. Chem. Technol., 17, 903 (2023); https://doi.org/10.23939/chcht17.04.903
S.S. Fiyadh, M.A. AlSaadi, W.Z. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S. Mohd, L.S. Hin and A. El-Shafie, J. Clean. Prod., 230, 783 (2019); https://doi.org/10.1016/j.jclepro.2019.05.154
A. Demirbas, J. Hazard. Mater., 157, 220 (2008); https://doi.org/10.1016/j.jhazmat.2008.01.024
A. Bhatnagar, W. Hogland, M. Marques and M. Sillanpää, Chem. Eng. J., 219, 499 (2013); https://doi.org/10.1016/j.cej.2012.12.038
J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla and M. Sánchez-Polo, J. Environ. Manage. 85, 833 (2007); https://doi.org/10.1016/j.jenvman.2007.07.031
A. Jusoh, L. Su-Shiung, N. Ali and M.J.M.M. Noor, Desalination, 206, 9 (2007); https://doi.org/10.1016/j.desal.2006.04.048
A. Jadhav and G. Mohanraj, Chem. Chem. Technol., 10, 201 (2016); https://doi.org/10.23939/chcht10.02.201
H. A. Hegazi, HBRC J., 9, 276 (2013); https://doi.org/10.1016/j.hbrcj.2013.08.004
F.O. Afolabi and P. Musonge, Molecules, 28, 7050 (2023); https://doi.org/10.3390/molecules28207050
F.O. Afolabi, P. Musonge and B.F. Bakare, Pol. J. Environ. Stud., 30, 1487 (2021); https://doi.org/10.15244/pjoes/122449
S. Ranganna, V.S. Govindarajan, K.V.R. Ramana and J.F. Kefford, CRC Crit. Rev. Food Sci. Nutr., 18, 313 (1983); https://doi.org/10.1080/10408398309527366
A. Eleryan, M. Yýlmaz, M.A. El-Nemr, S. Ragab, M. Helal, M.A. Hassaan and A. El Nemr, Sci. Rep., 12, 17797 (2022); https://doi.org/10.1038/s41598-022-22359-x
D. Racero-Galaraga, J.D. Rhenals-Julio, S. Sofan-German, J.M. Mendoza and A. Bula-Silvera, Results Chem., 12, 101886 (2024); https://doi.org/10.1016/j.rechem.2024.101886
J.C Igwe and A.A. Abia, Ecletica Quim., 32, 33 (2007); https://doi.org/10.1590/S0100-46702007000100005
A.B. Pérez Marín, M.I. Aguilar, J.F. Ortuño, V.F. Meseguer, J. Sáez and M. Lloréns, J. Chem. Technol. Biotechnol., 85, 1310 (2010); https://doi.org/10.1002/jctb.2432
E.N. El Qada, S.J. Allen and G.M. Walker, Ind. Eng. Chem. Res., 45, 6044 (2006); https://doi.org/10.1021/ie060289e
L.P. Cruz-Lopes, M. Macena, B. Esteves and R.P.F. Guiné, Open Agric., 6, 115 (2021); https://doi.org/10.1515/opag-2021-0225
S. Nethaji, A. Sivasamy and A.B. Mandal, Int. J. Environ. Sci. Technol., 10, 231 (2013); https://doi.org/10.1007/s13762-012-0112-0
B.B. Uzun, E. Apaydin-Varol, F. Ates, N. Özbay and A.E. Pütün, Fuel, 89, 176 (2010); https://doi.org/10.1016/j.fuel.2009.08.040
W.C.S. Wanasinghe, M.H.J.P. Gunarathna, H.M.P.I.K. Herath and G.Y. Jayasinghe, Sabaragamuwa Univ. J., 16, 17 (2018); https://doi.org/10.4038/suslj.v16i1.7714
Water-Quality-Salinity-Standards, Accessed: July 22, 2024; https://mrccc.org.au/wp-content/uploads/2013/10/Water-Quality-Salinity-Standards.pdf