Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of NaGd(MoO4)2:Eu3+/Yb3+ Phosphors by Cyclic Microwave-Modified Sol-Gel Method and their Upconversion Photoluminescence Properties
Corresponding Author(s) : Chang Sung Lim
Asian Journal of Chemistry,
Vol. 27 No. 10 (2015): Vol 27 Issue 10
Abstract
NaGd1-x(MoO4)2:Eu3+/Yb3+ phosphors with doping concentrations of Eu3+ and Yb3+ (x = Eu3+ + Yb3+, Eu3+ = 0.05, 0.1, 0.2 and Yb3+ = 0.2, 0.45) were successfully synthesized by the microwave-modified sol-gel method and the upconversion and spectroscopic properties were investigated. Well-crystallized particles showed a fine and homogeneous morphology with particle sizes of 2-5 μm. Under excitation at 980 nm, in the case of NaGd0.5(MoO4)2:Eu0.05Yb0.45 the particles exhibited a strong 525 nm emission band and a weak 550 nm emission band in the green region and a very weak 615 nm emission band in the red region. In the case of NaGd0.7(MoO4)2:Eu0.1Yb0.2 the particles showed a strong 475 nm emission band in the blue region and a strong 525 nm and a weak 550 nm emission bands in the green region. The Raman spectra of the doped particles indicated the domination of strong peaks at higher frequencies of 780, 890, 1366 and 1438 cm-1 and at lower frequencies of 324 and 400 cm-1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Mo, L. Zhou, Q. Pang, F. Gong and Z. Liang, Ceram. Int., 38, 6289 (2012); doi:10.1016/j.ceramint.2012.04.084.
- C. Guo, T. Chen, L. Luan, W. Zhang and D. Huang, J. Phys. Chem. Solids, 69, 1905 (2008); doi:10.1016/j.jpcs.2008.01.021.
- M. Wang, G. Abbineni, A. Clevenger, C. Mao and S. Xu, Nanomedicine, 7, 710 (2011); doi:10.1016/j.nano.2011.02.013.
- C. Guo, H.K. Yang and J.H. Jeong, J. Lumin., 130, 1390 (2010); doi:10.1016/j.jlumin.2010.02.052.
- J. Liao, D. Zhou, B. Yang, R. Liu, Q. Zhang and Q. Zhou, J. Lumin., 134, 533 (2013); doi:10.1016/j.jlumin.2012.07.033.
- J. Sun, J. Xian and H. Du, J. Phys. Chem. Solids, 72, 207 (2011); doi:10.1016/j.jpcs.2010.12.013.
- T. Li, C. Guo, Y. Wu, L. Li and J.H. Jeong, J. Alloys Comp., 540, 107 (2012); doi:10.1016/j.jallcom.2012.04.052.
- M. Nazarov and D.Y. Noh, J. Rare Earths, 28, 1 (2010); doi:10.1016/S1002-0721(10)60390-0.
- J. Sun, W. Zhang, W. Zhang and H. Du, Mater. Res. Bull., 47, 786 (2012); doi:10.1016/j.materresbull.2011.12.005.
- J. Yao, Z. Jia, P. Zhang, C. Shen, J. Wang, K.F. Aguey-Zinsou, C. Ma and L. Wang, Ceram. Int., 39, 2165 (2013); doi:10.1016/j.ceramint.2012.07.100.
- Z. Xia, H. Du, J. Sun, D. Chen and X. Wang, Mater. Chem. Phys., 119, 7 (2010); doi:10.1016/j.matchemphys.2009.08.036.
- F. Wu, L. Wang, C. Wu and Y. Bai, Electrochim. Acta, 54, 4613 (2009); doi:10.1016/j.electacta.2009.03.061.
- S. Das, A.K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mater. Sci., 32, 1 (2009); doi:10.1007/s12034-009-0001-4.
- C.S. Lim, Mater. Chem. Phys., 140, 154 (2013); doi:10.1016/j.matchemphys.2013.03.014.
- J. Liao, H. Huang, H. You, X. Qiu, Y. Li, B. Qiu and H. Wen, Mater. Res. Bull., 45, 1145 (2010); doi:10.1016/j.materresbull.2010.05.027.
- J. Sun, J. Xian, X. Zhang and H. Du, J. Rare Earths, 29, 32 (2011); doi:10.1016/S1002-0721(10)60396-1.
- Q. Sun, X. Chen, Z. Liu, F. Wang, Z. Jiang and C. Wang, J. Alloys Comp., 509, 5336 (2012); doi:10.1016/j.jallcom.2010.12.212.
- C.S. Lim, Mater. Res. Bull., 48, 3805 (2013); doi:10.1016/j.materresbull.2013.05.090.
References
F. Mo, L. Zhou, Q. Pang, F. Gong and Z. Liang, Ceram. Int., 38, 6289 (2012); doi:10.1016/j.ceramint.2012.04.084.
C. Guo, T. Chen, L. Luan, W. Zhang and D. Huang, J. Phys. Chem. Solids, 69, 1905 (2008); doi:10.1016/j.jpcs.2008.01.021.
M. Wang, G. Abbineni, A. Clevenger, C. Mao and S. Xu, Nanomedicine, 7, 710 (2011); doi:10.1016/j.nano.2011.02.013.
C. Guo, H.K. Yang and J.H. Jeong, J. Lumin., 130, 1390 (2010); doi:10.1016/j.jlumin.2010.02.052.
J. Liao, D. Zhou, B. Yang, R. Liu, Q. Zhang and Q. Zhou, J. Lumin., 134, 533 (2013); doi:10.1016/j.jlumin.2012.07.033.
J. Sun, J. Xian and H. Du, J. Phys. Chem. Solids, 72, 207 (2011); doi:10.1016/j.jpcs.2010.12.013.
T. Li, C. Guo, Y. Wu, L. Li and J.H. Jeong, J. Alloys Comp., 540, 107 (2012); doi:10.1016/j.jallcom.2012.04.052.
M. Nazarov and D.Y. Noh, J. Rare Earths, 28, 1 (2010); doi:10.1016/S1002-0721(10)60390-0.
J. Sun, W. Zhang, W. Zhang and H. Du, Mater. Res. Bull., 47, 786 (2012); doi:10.1016/j.materresbull.2011.12.005.
J. Yao, Z. Jia, P. Zhang, C. Shen, J. Wang, K.F. Aguey-Zinsou, C. Ma and L. Wang, Ceram. Int., 39, 2165 (2013); doi:10.1016/j.ceramint.2012.07.100.
Z. Xia, H. Du, J. Sun, D. Chen and X. Wang, Mater. Chem. Phys., 119, 7 (2010); doi:10.1016/j.matchemphys.2009.08.036.
F. Wu, L. Wang, C. Wu and Y. Bai, Electrochim. Acta, 54, 4613 (2009); doi:10.1016/j.electacta.2009.03.061.
S. Das, A.K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mater. Sci., 32, 1 (2009); doi:10.1007/s12034-009-0001-4.
C.S. Lim, Mater. Chem. Phys., 140, 154 (2013); doi:10.1016/j.matchemphys.2013.03.014.
J. Liao, H. Huang, H. You, X. Qiu, Y. Li, B. Qiu and H. Wen, Mater. Res. Bull., 45, 1145 (2010); doi:10.1016/j.materresbull.2010.05.027.
J. Sun, J. Xian, X. Zhang and H. Du, J. Rare Earths, 29, 32 (2011); doi:10.1016/S1002-0721(10)60396-1.
Q. Sun, X. Chen, Z. Liu, F. Wang, Z. Jiang and C. Wang, J. Alloys Comp., 509, 5336 (2012); doi:10.1016/j.jallcom.2010.12.212.
C.S. Lim, Mater. Res. Bull., 48, 3805 (2013); doi:10.1016/j.materresbull.2013.05.090.