Copyright (c) 2025 Dr Vijayalakshmi Pandurangan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic Performance of SnO2 Nanoparticles for the Efficient Degradation of Chlorpyrifos Pesticide Under Visible Light Irradiation
Corresponding Author(s) : Lakshmi Thangavelu
Asian Journal of Chemistry,
Vol. 37 No. 6 (2025): Vol 37 Issue 6, 2025
Abstract
Heterostructured semiconductor photocatalysts have demonstrated exceptional adsorption capabilities for organic pollutants, making them highly effective for environmental purification. In this study, SnO2 nanoparticles were synthesized using the hydrothermal method and examined as a potential photocatalyst. The synthesized nanoparticles were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), UV-visible spectroscopy and photoluminescence (PL) spectroscopy. The degradation of chlorpyrifos was monitored to evaluate the photocatalytic efficiency of SnO2 revealing that 78.8% of chlorpyrifos was eliminated within 90 min using 50 mg of photocatalyst with an initial pollutant concentration of 20 ppm. Scavenger tests were conducted to identify the reactive species involved in the photocatalytic process. Furthermore, the recyclability of the photocatalyst was assessed with a fresh chlorpyrifos sample, showing a decrease in degradation efficiency from 78.8% to 67.7%, confirming the efficient reusability of SnO2 nanoparticles and their high photocatalytic performance under visible light irradiation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.V. Arularasu, M. Harb and R. Sundaram, Carbohydr. Polym., 249, 116868 (2020); https://doi.org/10.1016/j.carbpol.2020.116868
- S. Sankeshi, P. Bajaj, V.P. Sivasankaran, M.V. Sunkara and P. Basak, ACS Appl. Mater. Interfaces, 17, 3757 (2025); https://doi.org/10.1021/acsami.4c17092
- M. Kaur, D. Prasher and R. Sharma, J. Water Environ. Nanotechnol., 7, 194 (2022); https://doi.org/10.22090/jwent.2022.02.007
- G. Ramanathan and K.R. Murali, J. Appl. Electrochem., 52, 849 (2022); https://doi.org/10.1007/s10800-022-01676-z
- G.B. Nam, J.-E. Ryu, T.H. Eom, S.J. Kim, J.M. Suh, S. Lee, S. Choi, C.W. Moon, S.J. Park, S.M. Lee, B. Kim, S.H. Park, J.W. Yang, S. Min, S. Park, S.H. Cho, H.J. Kim, S.E. Jun, T.H. Lee, Y.J. Kim, J.Y. Kim, Y.J. Hong, J.-I. Shim, H.-G. Byun, Y. Park, I. Park, S.-W. Ryu and H.W. Jang, Nano-Micro Lett., 16, 261 (2024); https://doi.org/10.1007/s40820-024-01486-2
- N.Y. Elamin, T. Indumathi and E.R. Kumar, Ceram. Int.. 49, 2388 (2023); https://doi.org/10.1016/j.ceramint.2022.09.211
- C. Liu, M. Han, C.-L. Chen, J. Yin, L. Zhang and J. Sun, Nano Lett., 23, 3507 (2023); https://doi.org/10.1021/acs.nanolett.3c00656
- M. Manimaran, A. Muthuvel and N.M. Said, Nanotechnol. Environ. Eng., 8, 413 (2023); https://doi.org/10.1007/s41204-022-00297-3
- M. Arif, M.Z.U. Shah, S.A. Ahmad, M.S. Shah, Z. Ali, A. Ullah, M. Idrees, J. Zeb, P. Song, T. Huang and J. Yi, Opt. Mater., 134, 113135 (2022); https://doi.org/10.1016/j.optmat.2022.113135
- G.H. Patel, S.H. Chaki, R.M. Kannaujiya, Z.R. Parekh, A.B. Hirpara, A.J. Khimani and M.P. Deshpande, Physica B, 613, 412987 (2021); https://doi.org/10.1016/j.physb.2021.412987
- J. He, H. Meng, X. Wang, Y. Xu and L. Feng, Sens. Actuators B Chem., 418, 136335 (2024); https://doi.org/10.1016/j.snb.2024.136335
- E. Skripkin, A.A. Podurets, D. Kolokolov, A. Burmistrova, N. Bobrysheva, M. Osmolowsky, M.A. Voznesenskiy and O. Osmolovskaya, ACS Omega, 7, 6093 (2021); https://doi.org/10.1021/acsomega.1c00043
- M.C. Uribe-López, M.C. Hidalgo-López, R. López-González, D.M. Frías-Márquez, G. Núñez-Nogueira, D. Hernández-Castillo and M.A. Alvarez-Lemus, J. Photochem. Photobiol. A: Chem., 404, 112866 (2021); https://doi.org/10.1016/j.jphotochem.2020.112866
- M.G. Kim, J.M. Kang, J.E. Lee, K.S. Kim, K.H. Kim, M. Cho and S.G. Lee, ACS Omega, 6, 10668 (2021); https://doi.org/10.1021/acsomega.1c00043
- S.K. Rahi, R.A. Al-Wardy and H.A.A.T. Al Ogaili, Baghdad Sci. J., 22, 1252 (2025); https://doi.org/10.21123/bsj.2024.8208
- M.A. Shilpa Amulya, H.P. Nagaswarupa, M.R. Anil Kumar, C.R. Ravikumar, K.B. Kusuma and S.C. Prashantha, J. Phys. Chem. Solids, 148, 109756 (2021); https://doi.org/10.1016/j.jpcs.2020.109756
- J. Mou, Y. Ren, J. Wang, C. Wang, Y. Zou, K. Lou, Z. Zheng and D. Zhang, Microfluid Nanofluid, 26, 25 (2022); https://doi.org/10.1007/s10404-022-02534-2
- D. Letsholathebe, F. Thema, K. Mphale, H.EA. Mohamed, K.J. Holonga, R. Ketlhwaafetse and S. Chimidza, Mater. Today: Proc., 36, 499 (2021); https://doi.org/10.1016/j.matpr.2020.05.205
- S.K. Jain, N.A. Pandit, M. Fazil, S.A. Ali, J. Ahmed, S.M. Alshehri, Y. Mao and T. Ahmad, Nanotechnology, 33, 355706 (2022); https://doi.org/10.1088/1361-6528/ac705a
- A. Al Baroot, K.A. Elsayed, S.A. Haladu, S.M. Magami, M. Alheshibri, F. Ercan, E. Çevik, S. Akhtar, A.A.Manda, T.S. Kayed, N.A. Altamimi, A.A. Alsanea and A.L. Al-Otaibi, Opt. Laser Technol., 157, 108734 (2023); https://doi.org/10.1016/j.optlastec.2022.108734
- D. Chen and L. Gao, Chem. Phys. Lett., 398, 201 (2004); https://doi.org/10.1016/j.cplett.2004.09.055
- R. Mahanta, P. Chetri and D. Bora, Mater. Today: Proc., (2023); https://doi.org/10.1016/j.matpr.2023.04.348
- B. Padmaja, S. Dhanapandian, K. Ashokkumar and N. Krishnakumar, Inorg. Chem. Commun., 155, 110948 (2023); https://doi.org/10.1016/j.inoche.2023.110948
- A.H. Pinto, A.E. Nogueira, C.J. Dalmaschio, I.N. Frigini, J.C. de Almeida, M.M. Ferrer, O.M. Berengue, R.A. Gonçalves and V.R. de Mendonça, Solids, 3, 327 (2022); https://doi.org/10.3390/solids3020024
- N.M. Al-Enazi, S. Alwakeel and E. Alhomaidi, J. Appl. Microbiol., 133, 3265 (2022); https://doi.org/10.1111/jam.15607
- S. Sagadevan, J.A. Lett, S.F. Alshahateet, I. Fatimah, G.K. Weldegebrieal, M.-V. Le, E. Leonard, S. Paiman and T. Soga, Inorg. Chem. Commun. 141, 109547 (2022); https://doi.org/10.1016/j.inoche.2022.109547
- M.S. Khan, J.A. Shah, M. Arshad, S.A. Halim, A. Khan, A.J. Shaikh, N. Riaz, A.J. Khan, M. Arfan, M. Shahid, A. Pervez, A. Al-Harrasi and M. Bilal, Molecules, 25, 4468 (2020); https://doi.org/10.3390/molecules25194468
- C. Sun, J. Yang, Y. Zhu, M. Xu, Y. Cui, L. Liu, W. Ren, H. Zhao and B. Liang, J. Alloys Comp., 871, 159561 (2021); https://doi.org/10.1016/j.jallcom.2021.159561
- B. Padmaja, S. Dhanapandian, S. Suthakaran, K. Ashokkumar and N. Krishnakumar, Inorg. Chem. Commun., 149, 110363 (2023); https://doi.org/10.1016/j.inoche.2022.110363
- S.R. Kiran Kumar, S. Harisha, P. Jalaja, B.K. Jayanna, K.Y. Kumar and M.S. Anantha, Sensors Int., 5, 100278 (2024); https://doi.org/10.1016/j.sintl.2023.100278
- P. S. Vindhya & V. T. Kavitha, J. Inorg. Organomet. Polym., 33, 2873 (2023); https://doi.org/10.1007/s10904-023-02733-6
- A.A. Podurets, E.V. Beletskii, E.V. Ubyivovk, N.P. Bobrysheva, M.G. Osmolowsky, M.A. Voznesenskiy and O.M. Osmolovskaya, Mater. Chem. Phys., 290, 126589 (2022); https://doi.org/10.1016/j.matchemphys.2022.126589
- M. Anu and S.S. Pillai, Solid State Commun., 341, 114577 (2022); https://doi.org/10.1016/j.ssc.2021.114577
- N. Rani, K. Khurana and N. Jaggi, Surf. Interfaces, 27, 101492 (2021); https://doi.org/10.1016/j.surfin.2021.101492
- S.S. Batros, S., M. Ali and A.J. Addie, J. Appl. Sci. Nanotechnol., 3, 20 (2023); https://doi.org/10.53293/jasn.2023.7107.1246
- T. Preethi, K. Senthil, M.P. Pachamuthu, R. Balakrishnaraja, N. Geetha, B. Sundaravel and S. Bellucci, Adsorpt. Sci. Technol., 2022, 9334079 (2022); https://doi.org/10.1155/2022/9334079
- K. Balakrishnan and N. Murugesan, Int. J. Nano Dimens., 12, 76 (2021); https://doi.org/10.22034/ijnd.2021.677125
- U. Altaf, M.Z. Ansari and S. Rubab, Mater. Chem. Phys., 297, 127304 (2023); https://doi.org/10.1016/j.matchemphys.2023.127304
- P. Jithin, K. Sudheendran, K. Sankaran and J. Kurian, Opt. Mater., 120, 111367 (2021); https://doi.org/10.1016/j.optmat.2021.111367
- S.A.A. Nami, M. Arshad, M.S. Khan, M. Alam, D.-U. Lee, S. Park and N. Sarikavakli, Polym. Adv. Technol., 26, 1627 (2015); https://doi.org/10.1002/pat.3591
- I.N. Reddy, K. Ashok, D.R. Cuddapah, A. Bhargav, M. Dhanasekar, J. Shim and C. Bai, Inorg. Chem. Commun., 167, 112729 (2024); https://doi.org/10.1016/j.inoche.2024.112729
- W.A.A. Mohamed, S.B. Moussa, H.H.A. El-Gawad, H.A. Mousa, H.T. Handal, H.R. Galal, I.A. Ibrahem, M.M. Fawzy, M.A.M. Ahmed, A.A. Labib and M.S.A. Abdel-Mottaleb, J. Clust. Sci., 36, 58 (2025); https://doi.org/10.1007/s10876-025-02772-8
- Y. Wu, H. Wang, M. Cao, Y. Zhang, F. Cao, X. Zheng, J. Hu, J. Dong and Z. Xiao, J. Nanosci. Nanotechnol., 15, 6495 (2015); https://doi.org/10.1166/jnn.2015.10781
References
M.V. Arularasu, M. Harb and R. Sundaram, Carbohydr. Polym., 249, 116868 (2020); https://doi.org/10.1016/j.carbpol.2020.116868
S. Sankeshi, P. Bajaj, V.P. Sivasankaran, M.V. Sunkara and P. Basak, ACS Appl. Mater. Interfaces, 17, 3757 (2025); https://doi.org/10.1021/acsami.4c17092
M. Kaur, D. Prasher and R. Sharma, J. Water Environ. Nanotechnol., 7, 194 (2022); https://doi.org/10.22090/jwent.2022.02.007
G. Ramanathan and K.R. Murali, J. Appl. Electrochem., 52, 849 (2022); https://doi.org/10.1007/s10800-022-01676-z
G.B. Nam, J.-E. Ryu, T.H. Eom, S.J. Kim, J.M. Suh, S. Lee, S. Choi, C.W. Moon, S.J. Park, S.M. Lee, B. Kim, S.H. Park, J.W. Yang, S. Min, S. Park, S.H. Cho, H.J. Kim, S.E. Jun, T.H. Lee, Y.J. Kim, J.Y. Kim, Y.J. Hong, J.-I. Shim, H.-G. Byun, Y. Park, I. Park, S.-W. Ryu and H.W. Jang, Nano-Micro Lett., 16, 261 (2024); https://doi.org/10.1007/s40820-024-01486-2
N.Y. Elamin, T. Indumathi and E.R. Kumar, Ceram. Int.. 49, 2388 (2023); https://doi.org/10.1016/j.ceramint.2022.09.211
C. Liu, M. Han, C.-L. Chen, J. Yin, L. Zhang and J. Sun, Nano Lett., 23, 3507 (2023); https://doi.org/10.1021/acs.nanolett.3c00656
M. Manimaran, A. Muthuvel and N.M. Said, Nanotechnol. Environ. Eng., 8, 413 (2023); https://doi.org/10.1007/s41204-022-00297-3
M. Arif, M.Z.U. Shah, S.A. Ahmad, M.S. Shah, Z. Ali, A. Ullah, M. Idrees, J. Zeb, P. Song, T. Huang and J. Yi, Opt. Mater., 134, 113135 (2022); https://doi.org/10.1016/j.optmat.2022.113135
G.H. Patel, S.H. Chaki, R.M. Kannaujiya, Z.R. Parekh, A.B. Hirpara, A.J. Khimani and M.P. Deshpande, Physica B, 613, 412987 (2021); https://doi.org/10.1016/j.physb.2021.412987
J. He, H. Meng, X. Wang, Y. Xu and L. Feng, Sens. Actuators B Chem., 418, 136335 (2024); https://doi.org/10.1016/j.snb.2024.136335
E. Skripkin, A.A. Podurets, D. Kolokolov, A. Burmistrova, N. Bobrysheva, M. Osmolowsky, M.A. Voznesenskiy and O. Osmolovskaya, ACS Omega, 7, 6093 (2021); https://doi.org/10.1021/acsomega.1c00043
M.C. Uribe-López, M.C. Hidalgo-López, R. López-González, D.M. Frías-Márquez, G. Núñez-Nogueira, D. Hernández-Castillo and M.A. Alvarez-Lemus, J. Photochem. Photobiol. A: Chem., 404, 112866 (2021); https://doi.org/10.1016/j.jphotochem.2020.112866
M.G. Kim, J.M. Kang, J.E. Lee, K.S. Kim, K.H. Kim, M. Cho and S.G. Lee, ACS Omega, 6, 10668 (2021); https://doi.org/10.1021/acsomega.1c00043
S.K. Rahi, R.A. Al-Wardy and H.A.A.T. Al Ogaili, Baghdad Sci. J., 22, 1252 (2025); https://doi.org/10.21123/bsj.2024.8208
M.A. Shilpa Amulya, H.P. Nagaswarupa, M.R. Anil Kumar, C.R. Ravikumar, K.B. Kusuma and S.C. Prashantha, J. Phys. Chem. Solids, 148, 109756 (2021); https://doi.org/10.1016/j.jpcs.2020.109756
J. Mou, Y. Ren, J. Wang, C. Wang, Y. Zou, K. Lou, Z. Zheng and D. Zhang, Microfluid Nanofluid, 26, 25 (2022); https://doi.org/10.1007/s10404-022-02534-2
D. Letsholathebe, F. Thema, K. Mphale, H.EA. Mohamed, K.J. Holonga, R. Ketlhwaafetse and S. Chimidza, Mater. Today: Proc., 36, 499 (2021); https://doi.org/10.1016/j.matpr.2020.05.205
S.K. Jain, N.A. Pandit, M. Fazil, S.A. Ali, J. Ahmed, S.M. Alshehri, Y. Mao and T. Ahmad, Nanotechnology, 33, 355706 (2022); https://doi.org/10.1088/1361-6528/ac705a
A. Al Baroot, K.A. Elsayed, S.A. Haladu, S.M. Magami, M. Alheshibri, F. Ercan, E. Çevik, S. Akhtar, A.A.Manda, T.S. Kayed, N.A. Altamimi, A.A. Alsanea and A.L. Al-Otaibi, Opt. Laser Technol., 157, 108734 (2023); https://doi.org/10.1016/j.optlastec.2022.108734
D. Chen and L. Gao, Chem. Phys. Lett., 398, 201 (2004); https://doi.org/10.1016/j.cplett.2004.09.055
R. Mahanta, P. Chetri and D. Bora, Mater. Today: Proc., (2023); https://doi.org/10.1016/j.matpr.2023.04.348
B. Padmaja, S. Dhanapandian, K. Ashokkumar and N. Krishnakumar, Inorg. Chem. Commun., 155, 110948 (2023); https://doi.org/10.1016/j.inoche.2023.110948
A.H. Pinto, A.E. Nogueira, C.J. Dalmaschio, I.N. Frigini, J.C. de Almeida, M.M. Ferrer, O.M. Berengue, R.A. Gonçalves and V.R. de Mendonça, Solids, 3, 327 (2022); https://doi.org/10.3390/solids3020024
N.M. Al-Enazi, S. Alwakeel and E. Alhomaidi, J. Appl. Microbiol., 133, 3265 (2022); https://doi.org/10.1111/jam.15607
S. Sagadevan, J.A. Lett, S.F. Alshahateet, I. Fatimah, G.K. Weldegebrieal, M.-V. Le, E. Leonard, S. Paiman and T. Soga, Inorg. Chem. Commun. 141, 109547 (2022); https://doi.org/10.1016/j.inoche.2022.109547
M.S. Khan, J.A. Shah, M. Arshad, S.A. Halim, A. Khan, A.J. Shaikh, N. Riaz, A.J. Khan, M. Arfan, M. Shahid, A. Pervez, A. Al-Harrasi and M. Bilal, Molecules, 25, 4468 (2020); https://doi.org/10.3390/molecules25194468
C. Sun, J. Yang, Y. Zhu, M. Xu, Y. Cui, L. Liu, W. Ren, H. Zhao and B. Liang, J. Alloys Comp., 871, 159561 (2021); https://doi.org/10.1016/j.jallcom.2021.159561
B. Padmaja, S. Dhanapandian, S. Suthakaran, K. Ashokkumar and N. Krishnakumar, Inorg. Chem. Commun., 149, 110363 (2023); https://doi.org/10.1016/j.inoche.2022.110363
S.R. Kiran Kumar, S. Harisha, P. Jalaja, B.K. Jayanna, K.Y. Kumar and M.S. Anantha, Sensors Int., 5, 100278 (2024); https://doi.org/10.1016/j.sintl.2023.100278
P. S. Vindhya & V. T. Kavitha, J. Inorg. Organomet. Polym., 33, 2873 (2023); https://doi.org/10.1007/s10904-023-02733-6
A.A. Podurets, E.V. Beletskii, E.V. Ubyivovk, N.P. Bobrysheva, M.G. Osmolowsky, M.A. Voznesenskiy and O.M. Osmolovskaya, Mater. Chem. Phys., 290, 126589 (2022); https://doi.org/10.1016/j.matchemphys.2022.126589
M. Anu and S.S. Pillai, Solid State Commun., 341, 114577 (2022); https://doi.org/10.1016/j.ssc.2021.114577
N. Rani, K. Khurana and N. Jaggi, Surf. Interfaces, 27, 101492 (2021); https://doi.org/10.1016/j.surfin.2021.101492
S.S. Batros, S., M. Ali and A.J. Addie, J. Appl. Sci. Nanotechnol., 3, 20 (2023); https://doi.org/10.53293/jasn.2023.7107.1246
T. Preethi, K. Senthil, M.P. Pachamuthu, R. Balakrishnaraja, N. Geetha, B. Sundaravel and S. Bellucci, Adsorpt. Sci. Technol., 2022, 9334079 (2022); https://doi.org/10.1155/2022/9334079
K. Balakrishnan and N. Murugesan, Int. J. Nano Dimens., 12, 76 (2021); https://doi.org/10.22034/ijnd.2021.677125
U. Altaf, M.Z. Ansari and S. Rubab, Mater. Chem. Phys., 297, 127304 (2023); https://doi.org/10.1016/j.matchemphys.2023.127304
P. Jithin, K. Sudheendran, K. Sankaran and J. Kurian, Opt. Mater., 120, 111367 (2021); https://doi.org/10.1016/j.optmat.2021.111367
S.A.A. Nami, M. Arshad, M.S. Khan, M. Alam, D.-U. Lee, S. Park and N. Sarikavakli, Polym. Adv. Technol., 26, 1627 (2015); https://doi.org/10.1002/pat.3591
I.N. Reddy, K. Ashok, D.R. Cuddapah, A. Bhargav, M. Dhanasekar, J. Shim and C. Bai, Inorg. Chem. Commun., 167, 112729 (2024); https://doi.org/10.1016/j.inoche.2024.112729
W.A.A. Mohamed, S.B. Moussa, H.H.A. El-Gawad, H.A. Mousa, H.T. Handal, H.R. Galal, I.A. Ibrahem, M.M. Fawzy, M.A.M. Ahmed, A.A. Labib and M.S.A. Abdel-Mottaleb, J. Clust. Sci., 36, 58 (2025); https://doi.org/10.1007/s10876-025-02772-8
Y. Wu, H. Wang, M. Cao, Y. Zhang, F. Cao, X. Zheng, J. Hu, J. Dong and Z. Xiao, J. Nanosci. Nanotechnol., 15, 6495 (2015); https://doi.org/10.1166/jnn.2015.10781