Copyright (c) 2025 S.B. Rathod, B.L. Shinde, V.N. Dhage, S.B. Godase, Kavita Durgade, Amit Gonjari, Omkar Jagtap

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Structural Analysis of Single Phase Nickel Ferrite (NiFe2O4) and their Application for Green Synthesis of 2-Amino-3-cyanopyridines
Corresponding Author(s) : S.B. Rathod
Asian Journal of Chemistry,
Vol. 37 No. 4 (2025): Vol 37 Issue 4, 2025
Abstract
A single-phase nickel ferrite (NiFe2O4) catalyst was synthesized using a straightforward chemical oxalate method with oxalic acid as precipitating agent. The structural and morphological properties of the prepared nickel ferrite catalyst were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM) techniques. The average crystallite size of NiFe2O4 was determined to be 37 nm, calculated using the Debye-Scherrer equation from the XRD analysis. Following the structural characterization, the catalytic efficiency of nickel ferrite was evaluated in the synthesis of 2-amino-3-cyanopyridine derivatives through a multicomponent reaction involving various aromatic aldehydes, malononitrile and cyclohexanone at room temperature. The NiFe2O4 effectively catalyzed the synthesis of 2-amino-3-cyanopyridine derivatives, yielding excellent product results in a very short reaction time under stirring at room temperature. Notably, the nickel ferrite catalyst could be easily recovered using an external magnet and reused four times without significant loss of catalytic efficiency.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Kumar, K. Sarkar, S. Kumar, R. Srivastava and R. Kumar, Int. Res. J. Adv. Eng. Hub, 2, 1659 (2024); https://doi.org/10.47392/IRJAEH.2024.0228
- Y.S. Vidya, H.C. Manjunatha, K.N. Sridhar, L. Seenappa, R. Munirathnam and B. Chinnappareddy, Inorg. Chem. Commun., 158, 111408 (2023); https://doi.org/10.1016/j.inoche.2023.111408
- A. Kale, S. Gubbala and R.D.K. Misra, J. Magn. Magn. Mater., 277, 350 (2004); https://doi.org/10.1016/j.jmmm.2003.11.015
- M. Salavati-Niasari, F. Davar and T. Mahmoudi, Polyhedron, 28, 1455 (2009); https://doi.org/10.1016/j.poly.2009.03.020
- S.A. Seyyed Ebrahimi and J. Azadmanjiri, J. Non-Cryst. Solids, 353, 802 (2007); https://doi.org/10.1016/j.jnoncrysol.2006.12.044
- J. Jiang and Y.M. Yang, Mater. Lett., 61, 4276 (2007); https://doi.org/10.1016/j.matlet.2007.01.111
- M.W. Kadi and R.M. Mohamed, Ceram. Int., 40, 227 (2014); https://doi.org/10.1016/j.ceramint.2013.05.128
- A. Ansari, V. Kumar Chakradhary and M.J. Akhtar, Adv. Mater. Process., 2, 32 (2021); https://doi.org/10.5185/amp.2017/108
- K.C. Babu Naidu and W. Madhuri, Bull. Mater. Sci., 40, 417 (2017); https://doi.org/10.1007/s12034-017-1374-4
- A.A. Sattar, H.M. El-Sayed and I. ALsuqia, J. Magn. Magn. Mater., 395, 89 (2015); https://doi.org/10.1016/j.jmmm.2015.07.039
- S. Hcini, A. Omri, M. Boudard, M.L. Bouazizi, A. Dhahri and K. Touileb, J. Mater. Sci. Mater. Electron., 29, 6879 (2018); https://doi.org/10.1007/s10854-018-8674-3
- T. Plutenko, O. V’yunov, O. Fedorchuk, S. Solopan, M. Plutenko and B. Khomenko, Ukra. Chem. J., 88, 16 (2022); https://doi.org/10.33609/2708-129X.88.07.2022.16-28
- R. Galindo, E. Mazario, S. Gutiérrez, M.P. Morales and P. Herrasti, J. Alloys Compd., 536, S241 (2012); https://doi.org/10.1016/j.jallcom.2011.12.061
- D. Hong, Y. Yamada, T. Nagatomi, Y. Takai and S. Fukuzumi, J. Am. Chem. Soc., 134, 19572 (2012); https://doi.org/10.1021/ja309771h
- F.M. Moghaddam, B. Koushki Foroushani and H.R. Rezvani, RSC Adv., 5, 18092 (2015); https://doi.org/10.1039/C4RA09348H
- J. He, S. Yang and A. Riisager, Catal. Sci. Technol., 8, 790 (2018); https://doi.org/10.1039/C7CY02197F
- G.A. Traistaru, C.I. Covaliu, V. Matei, D. Cusaru and I. Jitaru, Dig. J. Nano. Bio., 6, 1257 (2011).
- H. Zhao, Y. Dong, G. Wang, P. Jiang, J. Zhang, L. Wu and K. Li, Chem. Eng. J., 219, 295 (2013); https://doi.org/10.1016/j.cej.2013.01.019
- S.R. Borhade and S.B. Waghmode, Beilstein J. Org. Chem., 7, 310 (2011); https://doi.org/10.3762/bjoc.7.41
- B. Baruwati, D. Guin and S.V. Manorama, Org. Lett., 9, 5377 (2007); https://doi.org/10.1021/ol702064x
- S.R. Borhade and S.B. Waghmode, Indian J. Chem., 49B, 565 (2010).
- M.D. Hill, Chem. Eur. J., 16, 12052 (2010); https://doi.org/10.1002/chem.201001100
- A.A. Altaf, A. Shahzad, Z. Gul, N. Rasool, A. Badshah, B. Lal and E. Khan, J. Drug Des. Med. Chem., 1, 1 (2015).
- Y. Hamada, London, UK: Intech Open., 9 (2018).
- M.A. Radwan, M.A. Alshubramy, M. Abdel-Motaal, B.A. Hemdan and D.S. El-Kady, Bioorg. Chem., 96, 103516 (2020); https://doi.org/10.1016/j.bioorg.2019.103516
- M. El-Naggar, H. Almahli, H.S. Ibrahim, W.M. Eldehna and H.A. Abdel-Aziz, Molecules, 23, 1459 (2018); https://doi.org/10.3390/molecules23061459
- V. Kamat, R. Santosh, B. Poojary, S.P. Nayak, B.K. Kumar, Faheem, M. Sankaranarayanan, S. Khanapure, D.A. Barretto and S.K. Vootla, ACS Omega, 5, 25228 (2020); https://doi.org/10.1021/acsomega.0c03386
- S.R. Alizadeh and M.A. Ebrahimzadeh, Mini Rev. Med. Chem., 21, 2584 (2021); https://doi.org/10.2174/1389557521666210126143558
- G. Sadawarte, S. Jagatap, M. Patil, V. Jagrut and J.D. Rajput, Eur. J. Chem., 12, 279 (2021); https://doi.org/10.5155/eurjchem.12.3.279-283.2118
- S. Diodati, L. Nodari, M.M. Natile, A. Caneschi, C. de Julián Fernández, C. Hoffmann, S. Kaskel, A. Lieb, V. Di Noto, S. Mascotto, R. Saini and S. Gross, Eur. J. Inorg. Chem., 2014, 875 (2014); https://doi.org/10.1002/ejic.201301250
References
V. Kumar, K. Sarkar, S. Kumar, R. Srivastava and R. Kumar, Int. Res. J. Adv. Eng. Hub, 2, 1659 (2024); https://doi.org/10.47392/IRJAEH.2024.0228
Y.S. Vidya, H.C. Manjunatha, K.N. Sridhar, L. Seenappa, R. Munirathnam and B. Chinnappareddy, Inorg. Chem. Commun., 158, 111408 (2023); https://doi.org/10.1016/j.inoche.2023.111408
A. Kale, S. Gubbala and R.D.K. Misra, J. Magn. Magn. Mater., 277, 350 (2004); https://doi.org/10.1016/j.jmmm.2003.11.015
M. Salavati-Niasari, F. Davar and T. Mahmoudi, Polyhedron, 28, 1455 (2009); https://doi.org/10.1016/j.poly.2009.03.020
S.A. Seyyed Ebrahimi and J. Azadmanjiri, J. Non-Cryst. Solids, 353, 802 (2007); https://doi.org/10.1016/j.jnoncrysol.2006.12.044
J. Jiang and Y.M. Yang, Mater. Lett., 61, 4276 (2007); https://doi.org/10.1016/j.matlet.2007.01.111
M.W. Kadi and R.M. Mohamed, Ceram. Int., 40, 227 (2014); https://doi.org/10.1016/j.ceramint.2013.05.128
A. Ansari, V. Kumar Chakradhary and M.J. Akhtar, Adv. Mater. Process., 2, 32 (2021); https://doi.org/10.5185/amp.2017/108
K.C. Babu Naidu and W. Madhuri, Bull. Mater. Sci., 40, 417 (2017); https://doi.org/10.1007/s12034-017-1374-4
A.A. Sattar, H.M. El-Sayed and I. ALsuqia, J. Magn. Magn. Mater., 395, 89 (2015); https://doi.org/10.1016/j.jmmm.2015.07.039
S. Hcini, A. Omri, M. Boudard, M.L. Bouazizi, A. Dhahri and K. Touileb, J. Mater. Sci. Mater. Electron., 29, 6879 (2018); https://doi.org/10.1007/s10854-018-8674-3
T. Plutenko, O. V’yunov, O. Fedorchuk, S. Solopan, M. Plutenko and B. Khomenko, Ukra. Chem. J., 88, 16 (2022); https://doi.org/10.33609/2708-129X.88.07.2022.16-28
R. Galindo, E. Mazario, S. Gutiérrez, M.P. Morales and P. Herrasti, J. Alloys Compd., 536, S241 (2012); https://doi.org/10.1016/j.jallcom.2011.12.061
D. Hong, Y. Yamada, T. Nagatomi, Y. Takai and S. Fukuzumi, J. Am. Chem. Soc., 134, 19572 (2012); https://doi.org/10.1021/ja309771h
F.M. Moghaddam, B. Koushki Foroushani and H.R. Rezvani, RSC Adv., 5, 18092 (2015); https://doi.org/10.1039/C4RA09348H
J. He, S. Yang and A. Riisager, Catal. Sci. Technol., 8, 790 (2018); https://doi.org/10.1039/C7CY02197F
G.A. Traistaru, C.I. Covaliu, V. Matei, D. Cusaru and I. Jitaru, Dig. J. Nano. Bio., 6, 1257 (2011).
H. Zhao, Y. Dong, G. Wang, P. Jiang, J. Zhang, L. Wu and K. Li, Chem. Eng. J., 219, 295 (2013); https://doi.org/10.1016/j.cej.2013.01.019
S.R. Borhade and S.B. Waghmode, Beilstein J. Org. Chem., 7, 310 (2011); https://doi.org/10.3762/bjoc.7.41
B. Baruwati, D. Guin and S.V. Manorama, Org. Lett., 9, 5377 (2007); https://doi.org/10.1021/ol702064x
S.R. Borhade and S.B. Waghmode, Indian J. Chem., 49B, 565 (2010).
M.D. Hill, Chem. Eur. J., 16, 12052 (2010); https://doi.org/10.1002/chem.201001100
A.A. Altaf, A. Shahzad, Z. Gul, N. Rasool, A. Badshah, B. Lal and E. Khan, J. Drug Des. Med. Chem., 1, 1 (2015).
Y. Hamada, London, UK: Intech Open., 9 (2018).
M.A. Radwan, M.A. Alshubramy, M. Abdel-Motaal, B.A. Hemdan and D.S. El-Kady, Bioorg. Chem., 96, 103516 (2020); https://doi.org/10.1016/j.bioorg.2019.103516
M. El-Naggar, H. Almahli, H.S. Ibrahim, W.M. Eldehna and H.A. Abdel-Aziz, Molecules, 23, 1459 (2018); https://doi.org/10.3390/molecules23061459
V. Kamat, R. Santosh, B. Poojary, S.P. Nayak, B.K. Kumar, Faheem, M. Sankaranarayanan, S. Khanapure, D.A. Barretto and S.K. Vootla, ACS Omega, 5, 25228 (2020); https://doi.org/10.1021/acsomega.0c03386
S.R. Alizadeh and M.A. Ebrahimzadeh, Mini Rev. Med. Chem., 21, 2584 (2021); https://doi.org/10.2174/1389557521666210126143558
G. Sadawarte, S. Jagatap, M. Patil, V. Jagrut and J.D. Rajput, Eur. J. Chem., 12, 279 (2021); https://doi.org/10.5155/eurjchem.12.3.279-283.2118
S. Diodati, L. Nodari, M.M. Natile, A. Caneschi, C. de Julián Fernández, C. Hoffmann, S. Kaskel, A. Lieb, V. Di Noto, S. Mascotto, R. Saini and S. Gross, Eur. J. Inorg. Chem., 2014, 875 (2014); https://doi.org/10.1002/ejic.201301250