Copyright (c) 2025 Basavaraj Hungund

This work is licensed under a Creative Commons Attribution 4.0 International License.
Phytochemical Screening, GCMS-LCMS Analysis of Bioactive Compounds from Methanolic Extract of Eichhornia crassipes: In vitro Cytotoxic Effect against MCF7 Cell Line
Corresponding Author(s) : Basavaraj S. Hungund
Asian Journal of Chemistry,
Vol. 37 No. 6 (2025): Vol 37 Issue 6, 2025
Abstract
Eichhornia crassipes, commonly referred to as water hyacinth, is an invasive aquatic plant that has not undergone comprehensive research about its possible medicinal properties. The present study aims to utilize its rapidly growing potential for medical purposes. The leaves of Eichhornia crassipes were extracted in a sequential manner using hexane, methanol and water using Soxhlet apparatus. The preliminary phytochemical analysis has confirmed the presence of bioactive phytochemicals in the methanolic extract of E. crassipes leaves. The methanolic extract showed different types of high and low molecular weight compounds by GCMS-LCMS analysis. The GC-HRMS analysis revealed the presence of n-hexadecanoic acid, stigmasta-3,5-diene and vitamin E. The HR-LCMS analysis identified the presence of khivorin, cymarin and salicin using positive electrospray ionization (ESI) mode and rhoifolin and digitoxin using negative ESI mode. The isolated and identified compounds in the crude extract exhibit following bioactivities like antimicrobial, antidiabetic, hypocholesterolemic, antioxidant, anti-inflammatory and cytotoxic effects. The extract exhibited cytotoxic effect in the experiments against MCF7 breast cancer cell line, resulting in a reduction in cell viability to 48.29 ± 1.39% with an IC50 value of 770.90 µg/mL. Further, studies on DNA ladder assay demonstrated that the cytotoxic effect of extract is due to DNA fragmentation and alteration of DNA properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.M. Aboul-Enein, A.M. Al-Abd, E. Shalaby, F. Abul-Ela, A.A. Nasr-Allah, A.M. Mahmoud and H.A. El-Shemy, Plant Signal. Behav., 6, 834 (2011); https://doi.org/10.4161/psb.6.6.15166
- O.P. Ilo, M.D. Simatele, S.L. Nkomo, N.M. Mkhize and N.G. Prabhu, Sustainability, 12, 9222 (2020); https://doi.org/10.3390/su12219222
- J. Xu, X. Li and T. Gao, J. Environ. Res. Public Health, 19, 16725 (2022); https://doi.org/10.3390/ijerph192416725
- B. Bakrim, W. Ezzariai, A. Karouach, F. Sobeh, M. Kibret, M. Hafidi, Front. Pharmacol. 13, 842511 (2022); https://doi.org/10.3389/fphar.2022.842511
- S.M.M. Shanab, E.A. Shalaby, D.A. Lightfoot and H.A. El-Shemy, PLoS One, 5, e13200 (2010); https://doi.org/10.1371/journal.pone.0013200
- T.J. Makhafola, E.E. Elgorashi, L.J. McGaw, M.D. Awouafack, L. Verschaeve and J.N. Eloff, BMC Complement. Altern. Med., 17, 446 (2017); https://doi.org/10.1186/s12906-017-1935-5
- M.W. Haggag, S.M. Abou El Ella and H.F. Abouziena, Planta Daninha, 35, 1 (2017); https://doi.org/10.1590/s0100-83582017350100026
- S.T. Abdelkhalek, S.S. Abdelgayed, H. Jiang and M.Q. Wang, Toxins, 14, 327 (2022); https://doi.org/10.3390/toxins14050327
- N.P. Hegde and B.S. Hungund, Nat. Prod. Res., 35, 5334 (2021); https://doi.org/10.1080/14786419.2020.1756797
- N.H. Zamakshshari, I.A. Ahmed, N.A.M. Didik, M.N.A. Nasharuddin, N.M. Hashim and R. Abdullah, Biomass Convers. Biorefin., 13, 13995 (2023); https://doi.org/10.1007/s13399-021-02134-0
- Z. Zreen, A. Hameed, S. Kiran, T. Farooq and M.S. Zaroog, BioMed Res. Int., 2022, 4746223 (2022); https://doi.org/10.1155/2022/4746223
- F. Alhakmani, S. Kumar and S.A. Khan, Asian Pac. J. Trop. Biomed., 13, 623 (2013); https://doi.org/10.1016/S2221-1691(13)60126-4
- S.A. Baba and S.A. Malik, J. Taibah Univ. Sci., 9, 449 (2015); https://doi.org/10.1016/j.jtusci.2014.11.001
- S. Sepahpour, J. Selamat, M. Abdul Manap, A. Khatib and A. Abdull Razis, Molecules, 23, 402 (2018); https://doi.org/10.3390/molecules23020402
- M. Ajanal, M.B. Gundkalle and S.U. Nayak, Anc. Sci. Life, 31, 198 (2012); https://doi.org/10.4103/0257-7941.107361
- D. Prajapati, A. Makvana, M. Patel, R. Chaudhary and R. Patel, J. Pharmacogn. Phytochem., 13, 491 (2024); https://doi.org/10.22271/phyto.2024.v13.i5g.15117
- S.S. Nielsen, Phenol-Sulfuric Acid Method for Total Carbohydrates. In: Food Analysis Laboratory Manual, Boston MA: Springer USA, pp. 47–53 (2010); https://doi.org/10.1007/978-1-4419-1463-7_6
- G.R.M. Chelladurai and C. Chinnachamy, Braz. J. Pharm. Sci., 54, e17151 (2018); https://doi.org/10.1590/s2175-97902018000117151
- G. Tadege, B. Sirak, D. Abebe and D. Nureye, Front. Pharmacol., 14, 10 (2023); https://doi.org/10.3389/fphar.2023.1284087
- Y.M. Reddy, S.P.J. Kumar, K.V. Saritha, P. Gopal, T.M. Reddy and J. Simal-Gandara, Plants, 10, 545 (2021); https://doi.org/10.3390/plants10030545
- M. Maqsood, D. Ahmed, I. Atique and W. Malik, Asian Pac. J. Trop. Med., 10, 305 (2017); https://doi.org/10.1016/j.apjtm.2017.03.010
- S.S. Bhat, V.K. Revankar, V. Kumbar, K. Bhat and V.A. Kawade, Acta Crystallogr. C Struct. Chem., 74, 146 (2018); https://doi.org/10.1107/S2053229617018551
- O. Aslantürk, in eds.: M.L. Larramendy and S. Soloneski, In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages, In: Genotoxicity-A Predictable Risk to Our Actual World, InTechOpen (2018); https://doi.org/10.5772/intechopen.71923
- A. Huete, K. Didan, T. Miura, E.P. Rodriguez, X. Gao and L.G. Ferreira, Remote Sens. Environ., 83, 195 (2002); https://doi.org/10.1016/S0034-4257(02)00096-2
- F.P. Casuga, A.L. Castillo and M.J. Corpuz, Asian Pac. J. Trop. Biomed., 6, 957 (2016); https://doi.org/10.1016/j.apjtb.2016.08.015
- A. Joshi, H. Lad, H. Sharma and D. Bhatnagar, Clin. Phytoscience, 4, 7 (2018); https://doi.org/10.1186/s40816-018-0064-0
- T. Tyagi and M. Agrawal, J. Plant Sci., 3, 10 (2015).
- K.P. Noufal, B. Rajesh and S.S. Naik, Cureus, 15, e34545 (2023); https://doi.org/10.7759/cureus.34545
- A. Banerjee, B. Maji, S. Mukherjee, K. Chaudhuri and T. Seal, J. Appl. Biol. Biotechnol., 5, 61 (2017); https://doi.org/10.7324/JABB.2017.50311
- O. Adeyemi and C.C. Osubor, Egypt. J. Aquat. Res., 42, 269 (2016); https://doi.org/10.1016/j.ejar.2016.08.002
- S. Panthagada, A. Seethala, M.S. Reddi, S. Bennabattahula and L. Kandiboti, Int. J. Pharm. Sci. Rev. Res., 48, 37 (2018).
- K. Saritha, A. Rajesh, K. Manjulatha, O.H. Setty and S. Yenugu, Front. Microbiol., 6, 577 (2015); https://doi.org/10.3389/fmicb.2015.00577
- K. Aravindaram and N.-S. Yang, Planta Med., 76, 1103 (2010); https://doi.org/10.1055/s-0030-1249859
- O.S. Nwozo, E.M. Effiong, P.M. Aja and C.G. Awuchi, Int. J. Food Prop., 26, 359 (2023); https://doi.org/10.1080/10942912.2022.2157425
- W. Xu, Z. Wang, K. Li, Y. Shen, K. Lu, X. Lv, Y. Wen and R. Jin, Curr. Med. Sci., 40, 354 (2020); https://doi.org/10.1007/s11596-020-2181-5
- T. Mishra, M. Khullar and A. Bhatia, Evid. Based Complement. Alternat. Med., 2011, 765029 (2011); https://doi.org/10.1155/2011/765029
- T. Tyagi and M. Agarwal, Adv. Biores., 8, 204 (2017); https://doi.org/10.15515/abr.0976-4585.8.5.204211
References
A.M. Aboul-Enein, A.M. Al-Abd, E. Shalaby, F. Abul-Ela, A.A. Nasr-Allah, A.M. Mahmoud and H.A. El-Shemy, Plant Signal. Behav., 6, 834 (2011); https://doi.org/10.4161/psb.6.6.15166
O.P. Ilo, M.D. Simatele, S.L. Nkomo, N.M. Mkhize and N.G. Prabhu, Sustainability, 12, 9222 (2020); https://doi.org/10.3390/su12219222
J. Xu, X. Li and T. Gao, J. Environ. Res. Public Health, 19, 16725 (2022); https://doi.org/10.3390/ijerph192416725
B. Bakrim, W. Ezzariai, A. Karouach, F. Sobeh, M. Kibret, M. Hafidi, Front. Pharmacol. 13, 842511 (2022); https://doi.org/10.3389/fphar.2022.842511
S.M.M. Shanab, E.A. Shalaby, D.A. Lightfoot and H.A. El-Shemy, PLoS One, 5, e13200 (2010); https://doi.org/10.1371/journal.pone.0013200
T.J. Makhafola, E.E. Elgorashi, L.J. McGaw, M.D. Awouafack, L. Verschaeve and J.N. Eloff, BMC Complement. Altern. Med., 17, 446 (2017); https://doi.org/10.1186/s12906-017-1935-5
M.W. Haggag, S.M. Abou El Ella and H.F. Abouziena, Planta Daninha, 35, 1 (2017); https://doi.org/10.1590/s0100-83582017350100026
S.T. Abdelkhalek, S.S. Abdelgayed, H. Jiang and M.Q. Wang, Toxins, 14, 327 (2022); https://doi.org/10.3390/toxins14050327
N.P. Hegde and B.S. Hungund, Nat. Prod. Res., 35, 5334 (2021); https://doi.org/10.1080/14786419.2020.1756797
N.H. Zamakshshari, I.A. Ahmed, N.A.M. Didik, M.N.A. Nasharuddin, N.M. Hashim and R. Abdullah, Biomass Convers. Biorefin., 13, 13995 (2023); https://doi.org/10.1007/s13399-021-02134-0
Z. Zreen, A. Hameed, S. Kiran, T. Farooq and M.S. Zaroog, BioMed Res. Int., 2022, 4746223 (2022); https://doi.org/10.1155/2022/4746223
F. Alhakmani, S. Kumar and S.A. Khan, Asian Pac. J. Trop. Biomed., 13, 623 (2013); https://doi.org/10.1016/S2221-1691(13)60126-4
S.A. Baba and S.A. Malik, J. Taibah Univ. Sci., 9, 449 (2015); https://doi.org/10.1016/j.jtusci.2014.11.001
S. Sepahpour, J. Selamat, M. Abdul Manap, A. Khatib and A. Abdull Razis, Molecules, 23, 402 (2018); https://doi.org/10.3390/molecules23020402
M. Ajanal, M.B. Gundkalle and S.U. Nayak, Anc. Sci. Life, 31, 198 (2012); https://doi.org/10.4103/0257-7941.107361
D. Prajapati, A. Makvana, M. Patel, R. Chaudhary and R. Patel, J. Pharmacogn. Phytochem., 13, 491 (2024); https://doi.org/10.22271/phyto.2024.v13.i5g.15117
S.S. Nielsen, Phenol-Sulfuric Acid Method for Total Carbohydrates. In: Food Analysis Laboratory Manual, Boston MA: Springer USA, pp. 47–53 (2010); https://doi.org/10.1007/978-1-4419-1463-7_6
G.R.M. Chelladurai and C. Chinnachamy, Braz. J. Pharm. Sci., 54, e17151 (2018); https://doi.org/10.1590/s2175-97902018000117151
G. Tadege, B. Sirak, D. Abebe and D. Nureye, Front. Pharmacol., 14, 10 (2023); https://doi.org/10.3389/fphar.2023.1284087
Y.M. Reddy, S.P.J. Kumar, K.V. Saritha, P. Gopal, T.M. Reddy and J. Simal-Gandara, Plants, 10, 545 (2021); https://doi.org/10.3390/plants10030545
M. Maqsood, D. Ahmed, I. Atique and W. Malik, Asian Pac. J. Trop. Med., 10, 305 (2017); https://doi.org/10.1016/j.apjtm.2017.03.010
S.S. Bhat, V.K. Revankar, V. Kumbar, K. Bhat and V.A. Kawade, Acta Crystallogr. C Struct. Chem., 74, 146 (2018); https://doi.org/10.1107/S2053229617018551
O. Aslantürk, in eds.: M.L. Larramendy and S. Soloneski, In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages, In: Genotoxicity-A Predictable Risk to Our Actual World, InTechOpen (2018); https://doi.org/10.5772/intechopen.71923
A. Huete, K. Didan, T. Miura, E.P. Rodriguez, X. Gao and L.G. Ferreira, Remote Sens. Environ., 83, 195 (2002); https://doi.org/10.1016/S0034-4257(02)00096-2
F.P. Casuga, A.L. Castillo and M.J. Corpuz, Asian Pac. J. Trop. Biomed., 6, 957 (2016); https://doi.org/10.1016/j.apjtb.2016.08.015
A. Joshi, H. Lad, H. Sharma and D. Bhatnagar, Clin. Phytoscience, 4, 7 (2018); https://doi.org/10.1186/s40816-018-0064-0
T. Tyagi and M. Agrawal, J. Plant Sci., 3, 10 (2015).
K.P. Noufal, B. Rajesh and S.S. Naik, Cureus, 15, e34545 (2023); https://doi.org/10.7759/cureus.34545
A. Banerjee, B. Maji, S. Mukherjee, K. Chaudhuri and T. Seal, J. Appl. Biol. Biotechnol., 5, 61 (2017); https://doi.org/10.7324/JABB.2017.50311
O. Adeyemi and C.C. Osubor, Egypt. J. Aquat. Res., 42, 269 (2016); https://doi.org/10.1016/j.ejar.2016.08.002
S. Panthagada, A. Seethala, M.S. Reddi, S. Bennabattahula and L. Kandiboti, Int. J. Pharm. Sci. Rev. Res., 48, 37 (2018).
K. Saritha, A. Rajesh, K. Manjulatha, O.H. Setty and S. Yenugu, Front. Microbiol., 6, 577 (2015); https://doi.org/10.3389/fmicb.2015.00577
K. Aravindaram and N.-S. Yang, Planta Med., 76, 1103 (2010); https://doi.org/10.1055/s-0030-1249859
O.S. Nwozo, E.M. Effiong, P.M. Aja and C.G. Awuchi, Int. J. Food Prop., 26, 359 (2023); https://doi.org/10.1080/10942912.2022.2157425
W. Xu, Z. Wang, K. Li, Y. Shen, K. Lu, X. Lv, Y. Wen and R. Jin, Curr. Med. Sci., 40, 354 (2020); https://doi.org/10.1007/s11596-020-2181-5
T. Mishra, M. Khullar and A. Bhatia, Evid. Based Complement. Alternat. Med., 2011, 765029 (2011); https://doi.org/10.1155/2011/765029
T. Tyagi and M. Agarwal, Adv. Biores., 8, 204 (2017); https://doi.org/10.15515/abr.0976-4585.8.5.204211