Copyright (c) 2025 Bhaskar Kuthati, VEERALAKSHMI VADDEBOINA, SUBBA REDDY ALLA ALLA

This work is licensed under a Creative Commons Attribution 4.0 International License.
Furfural to 2-Methylfuran via Transfer Hydrodeoxygenation using 2-Pentanol over Cu-ZnO Nanowires: Extraction of Furfural and its Conversion to 2-Methylfuran
Corresponding Author(s) : Bhaskar Kuthati
Asian Journal of Chemistry,
Vol. 37 No. 4 (2025): Vol 37 Issue 4, 2025
Abstract
The extraction of furfural from an aqueous solution and its conversion to 2-methylfuran through transfer hydrodeoxygenation (THDO) have been successfully carried out using a Cu-ZnO (30:70) catalyst in the vapour phase, utilizing 2-pentanol as extraction solvent and hydrogen. Due to the lower temperature of the reaction, the yield of 2-methylfuran and 2-pentanone was 83% and 90%, respectively. The carbon balance concerning furfural was >90%, which is higher than that of direct hydrodeoxygenation of furfural. The activity of catalyst and the yield of 2-methylfuran are associated with the number of surface active sites (Cu0/Cu+), as the high loading of catalyst produced a high yield of 2-methylfuran. The stability of the catalyst was studied for 23 h at 250 ºC and found to have stable activity. Moreover, the Lewis acidity of Zn2+ facilitates the process more easily and the final catalyst generated from aurichalcite is responsible for the increased number of copper sites on the catalyst’s surface. Moreover, XPS analysis also proved the presence of more surface Cu0 species and CHNS analysis confirmed the coke resistance of the Cu-ZnO catalyst.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhou, J. Remón, X. Pang, Z. Jiang, H. Liu and W. Ding, Sci. Total Environ., 886, 163920 (2023); https://doi.org/10.1016/j.scitotenv.2023.163920
- L. Chen, Y. Liu, X. Zhang, J. Liu, Q. Zhang and L. Ma, Fuel, 334, 126665 (2023); https://doi.org/10.1016/j.fuel.2022.126665
- B. Seemala, R. Kumar, C.M. Cai, C.E. Wyman and P. Christopher, React. Chem. Eng., 4, 261 (2019); https://doi.org/10.1039/C8RE00195B
- X. Li, P. Jia and T. Wang, ACS Catal., 6, 7621 (2016); https://doi.org/10.1021/acscatal.6b01838
- Z. Fu, Z. Wang, W. Lin, W. Song and S. Li, Appl. Catal. A Gen., 547, 248 (2017); https://doi.org/10.1016/j.apcata.2017.09.011
- V. Choudhary, S.I. Sandler and D.G. Vlachos, ACS Catal., 2, 2022 (2012); https://doi.org/10.1021/cs300265d
- J.L. Cabezas, L.A. Barcena, J. Coca and M. Cockrem, J. Chem. Eng. Data, 33, 435 (1988); https://doi.org/10.1021/je00054a014
- S.K. Jaatinen, R.S. Karinen and J.S. Lehtonen, ChemistrySelect, 1, 5363 (2016); https://doi.org/10.1002/slct.201601333
- D. Scholz, C. Aellig and I. Hermans, ChemSusChem, 7, 268 (2014); https://doi.org/10.1002/cssc.201300774
- R.S. Rao, R.T.K. Baker and M.A. Vannice, Catal. Lett., 60, 51 (1999); https://doi.org/10.1023/A:1019090520407
- P.D. Vaidya and V.V. Mahajani, Ind. Eng. Chem. Res., 42, 3881 (2003); https://doi.org/10.1021/ie030055k
- J. Kijenski, P. Winiarek, T. Paryjczak, A. Lewicki and A. Mikolajska, Appl. Catal. A Gen., 233, 171 (2002); https://doi.org/10.1016/S0926-860X(02)00140-0
- C.P. Jimenez-Gomez, J.A. Cecilia, R. Moreno-Tost and P. Maireles-Torres, ChemSusChem, 10, 1448 (2017); https://doi.org/10.1002/cssc.201700086
- C.P. Jimenez-Gomez, J.A. Cecilia, R. Moreno-Tost and P. Maireles-Torres, ChemCatChem, 9, 2881 (2017); https://doi.org/10.1002/cctc.201700312
- C.P. Jimenez-Gomez, J.A. Cecilia, D. Duran-Martin, R. Moreno-Tost, J. Santamaria-Gonzalez, J. Merida-Robles, R. Mariscal and P. Maireles-Torres, J. Catal., 336, 107 (2016); https://doi.org/10.1016/j.jcat.2016.01.012
- X. Yang, H. Chen, Q. Meng, H. Zheng, Y. Zhu and Y.W. Li, Catal. Sci. Technol., 7, 5625 (2017); https://doi.org/10.1039/C7CY01284E
- S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau and S. Royer, Chem. Rev., 118, 11023 (2018); https://doi.org/10.1021/acs.chemrev.8b00134
- X. Yang, X. Xiang, H. Chen, H. Zheng, Y.-W. Li and Y. Zhu, ChemCatChem, 9, 3023 (2017); https://doi.org/10.1002/cctc.201700279
- F. Wang and Z. Zhang, ACS Sustain. Chem. Eng., 5, 942 (2017); https://doi.org/10.1021/acssuschemeng.6b02272
- H.P. Reddy Kannapu, C.A. Mullen, Y. Elkasabi and A.A. Boateng, Fuel Process. Technol., 137, 220 (2015); https://doi.org/10.1016/j.fuproc.2015.04.023
- P. Panagiotopoulou, N. Martin and D.G. Vlachos, ChemSusChem, 8, 2046 (2015); https://doi.org/10.1002/cssc.201500212
- M. Koehle and R.F. Lobo, Catal. Sci. Technol., 6, 3018 (2016); https://doi.org/10.1039/C5CY01501D
- E. Ramiro, Process for Separating Furfural from a Liquid Aqueous Phase Comprising Furfural and One or More Organic Acids, WO 2U11/161141Al (2011).
- D.J. Medeiros and M.B. Burnett, Furfural Process, US Patent 4533743A (1985).
- S. Kuld, C. Conradsen, P.G. Moses, I. Chorkendorff and J. Sehested, Angew. Chem. Int. Ed., 53, 5941 (2014); https://doi.org/10.1002/anie.201311073
References
Y. Zhou, J. Remón, X. Pang, Z. Jiang, H. Liu and W. Ding, Sci. Total Environ., 886, 163920 (2023); https://doi.org/10.1016/j.scitotenv.2023.163920
L. Chen, Y. Liu, X. Zhang, J. Liu, Q. Zhang and L. Ma, Fuel, 334, 126665 (2023); https://doi.org/10.1016/j.fuel.2022.126665
B. Seemala, R. Kumar, C.M. Cai, C.E. Wyman and P. Christopher, React. Chem. Eng., 4, 261 (2019); https://doi.org/10.1039/C8RE00195B
X. Li, P. Jia and T. Wang, ACS Catal., 6, 7621 (2016); https://doi.org/10.1021/acscatal.6b01838
Z. Fu, Z. Wang, W. Lin, W. Song and S. Li, Appl. Catal. A Gen., 547, 248 (2017); https://doi.org/10.1016/j.apcata.2017.09.011
V. Choudhary, S.I. Sandler and D.G. Vlachos, ACS Catal., 2, 2022 (2012); https://doi.org/10.1021/cs300265d
J.L. Cabezas, L.A. Barcena, J. Coca and M. Cockrem, J. Chem. Eng. Data, 33, 435 (1988); https://doi.org/10.1021/je00054a014
S.K. Jaatinen, R.S. Karinen and J.S. Lehtonen, ChemistrySelect, 1, 5363 (2016); https://doi.org/10.1002/slct.201601333
D. Scholz, C. Aellig and I. Hermans, ChemSusChem, 7, 268 (2014); https://doi.org/10.1002/cssc.201300774
R.S. Rao, R.T.K. Baker and M.A. Vannice, Catal. Lett., 60, 51 (1999); https://doi.org/10.1023/A:1019090520407
P.D. Vaidya and V.V. Mahajani, Ind. Eng. Chem. Res., 42, 3881 (2003); https://doi.org/10.1021/ie030055k
J. Kijenski, P. Winiarek, T. Paryjczak, A. Lewicki and A. Mikolajska, Appl. Catal. A Gen., 233, 171 (2002); https://doi.org/10.1016/S0926-860X(02)00140-0
C.P. Jimenez-Gomez, J.A. Cecilia, R. Moreno-Tost and P. Maireles-Torres, ChemSusChem, 10, 1448 (2017); https://doi.org/10.1002/cssc.201700086
C.P. Jimenez-Gomez, J.A. Cecilia, R. Moreno-Tost and P. Maireles-Torres, ChemCatChem, 9, 2881 (2017); https://doi.org/10.1002/cctc.201700312
C.P. Jimenez-Gomez, J.A. Cecilia, D. Duran-Martin, R. Moreno-Tost, J. Santamaria-Gonzalez, J. Merida-Robles, R. Mariscal and P. Maireles-Torres, J. Catal., 336, 107 (2016); https://doi.org/10.1016/j.jcat.2016.01.012
X. Yang, H. Chen, Q. Meng, H. Zheng, Y. Zhu and Y.W. Li, Catal. Sci. Technol., 7, 5625 (2017); https://doi.org/10.1039/C7CY01284E
S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau and S. Royer, Chem. Rev., 118, 11023 (2018); https://doi.org/10.1021/acs.chemrev.8b00134
X. Yang, X. Xiang, H. Chen, H. Zheng, Y.-W. Li and Y. Zhu, ChemCatChem, 9, 3023 (2017); https://doi.org/10.1002/cctc.201700279
F. Wang and Z. Zhang, ACS Sustain. Chem. Eng., 5, 942 (2017); https://doi.org/10.1021/acssuschemeng.6b02272
H.P. Reddy Kannapu, C.A. Mullen, Y. Elkasabi and A.A. Boateng, Fuel Process. Technol., 137, 220 (2015); https://doi.org/10.1016/j.fuproc.2015.04.023
P. Panagiotopoulou, N. Martin and D.G. Vlachos, ChemSusChem, 8, 2046 (2015); https://doi.org/10.1002/cssc.201500212
M. Koehle and R.F. Lobo, Catal. Sci. Technol., 6, 3018 (2016); https://doi.org/10.1039/C5CY01501D
E. Ramiro, Process for Separating Furfural from a Liquid Aqueous Phase Comprising Furfural and One or More Organic Acids, WO 2U11/161141Al (2011).
D.J. Medeiros and M.B. Burnett, Furfural Process, US Patent 4533743A (1985).
S. Kuld, C. Conradsen, P.G. Moses, I. Chorkendorff and J. Sehested, Angew. Chem. Int. Ed., 53, 5941 (2014); https://doi.org/10.1002/anie.201311073