Copyright (c) 2025 J SANTHAN KUMAR, Dr. N Rajya Lakshmi, Dr. K.Neeraja, Dr. T. Anjana Devi, Dr. D. TIRUPATHI SWAMY, Mr. SHAIK AZAD BASHA, Prof. Sandhya Cole

This work is licensed under a Creative Commons Attribution 4.0 International License.
Spectroscopic and Optical Studies of Molybdenum Ions in CdO-SrO-B2O3-SiO2 (CdSBSi) Glass System
Corresponding Author(s) : J. Santhan Kumar
Asian Journal of Chemistry,
Vol. 37 No. 5 (2025): Vol 37 Issue 5, 2025
Abstract
In this work, the electron paramagnetic resonance (EPR) and optical absorption investigations at room temperature have been conducted on MoO3-CdO-SrO-B2O3-SiO2 glasses by altering percentages of SrO and MoO3. The distinctive EPR spectra of Mo5+ appeared at centered around g ~ 2.00 and are attributed to the Mo5+ ion within an axially distorted octahedral coordination sphere. Red shift was observed near an absorption edge in the UV spectra. The fundamental UV edges of absorption of the glasses were used to evaluate the Urbach energies and optical band gaps for transitions which occur directly or indirectly. A theoretical evaluation of glasses’ optical basicity (Λth) has been conducted. The interaction between oxygen ligands and Mo5+ ions has been demonstrated to be improved. The covalent-to-ionic ratios of the glass can be classified using optical basicity, since a higher optical basicity indicates a lower degree of covalence.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Zeng, H. Sheng, Y. Ding, L. Wang, W.Yang, J.-Z. Jiang, W.L. Mao and H.-K. Mao, Science, 332, 1404 (2011); https://doi.org/10.1126/science.120032
- X. Lu, J.D. Vienna and J. Du, J. Am. Ceram. Soc., 107, 1603 (2024); https://doi.org/10.1111/jace.19333
- B. Karasu, I. Demirel, S. Aydin, M. Dalkiran and B. Lik, El-Cezerî J. Sci. Eng., 7, 940 (2020); https://doi.org/10.31202/ecjse.672615
- Y.B. Saddeek, K.A. Aly and S.A. Bashier, Physica B, 405, 2407 (2010); https://doi.org/10.1016/j.physb.2010.02.055
- S.A.M. Issa, H.O. Tekin, M.M. Hessien and Y.S. Rammah, J. Aust. Ceram. Soc., 58, 495 (2022); https://doi.org/10.1007/s41779-022-00706-5
- D.A. McKeown, W.K. Kot and I.L. Pegg, J. Non-Cryst. Solids, 317, 290 (2003); https://doi.org/10.1016/S0022-3093(02)01816-1
- R. Baylor Jr. and J.J. Brown Jr., J. Am. Ceram. Soc., 59, 131 (1976); https://doi.org/10.1111/j.1151-2916.1976.tb09449.x
- S.V. Stolyar, N.G. Tyurnina, Z.G. Tyurnina and L.A. Doronina, Glass Phys. Chem., 34, 509 (2008); https://doi.org/10.1134/S1087659608040214
- S.V. Stolyar and N.G. Tyurnina, Glass Phys. Chem., 35, 149 (2009); https://doi.org/10.1134/S1087659609020047
- N.G. Tyurnina, Z.G. Tyurnina and S.I. Sviridov, Glass Phys. Chem., 35, 153 (2009); https://doi.org/10.1134/S1087659609020059
- V.V. Golubkov, N.G. Tyurnina, Z.G. Tyurnina and V.L. Stolyarova, Glass Phys. Chem., 35, 455 (2009); https://doi.org/10.1134/S1087659609050010
- Y. Liu, Y. Wang and J.S. Ma, Key Eng. Mater., 336–338, 783 (2007); https://doi.org/10.4028/www.scientific.net/KEM.336-338.783
- C.-C. Chiang, S.-F. Wang, Y.-R. Wang and W.-C.J. Wei, Ceram. Int., 34, 599 (2008); https://doi.org/10.1016/j.ceramint.2006.12.008
- H. Hirashima, Y. Watanabe and T. Yoshida, J. Non-Cryst. Solids, 95-96, 825 (1987); https://doi.org/10.1016/S0022-3093(87)80687-7
- M.M. Ahmed, C.A. Hogarth and M.N. Khan, J. Mater. Sci., 19, 4040 (1984); https://doi.org/10.1007/BF00980769
- N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford University Press: Oxford, edn, 2, p. 273 (1979).
- J. Tauc, Amorphous and Liquid Semiconductor, Plenum: New York, (1974).
- K. Subrahmanyam and M. Salagram, Opt. Mater., 15, 181 (2000); https://doi.org/10.1016/S0925-3467(00)00033-1
- S. Simon and A.L. Nicula, J. Non-Cryst. Solids, 57, 23 (1983); https://doi.org/10.1016/0022-3093(83)90405-2
- A.M. Efimov, J. Non-Cryst. Solids, 203, 1 (1996); https://doi.org/10.1016/0022-3093(96)00327-4
- P.S. Prasad, B.V. Raghavaiah, R.B. Rao, C. Laxmikanth and N. Veeraiah, Solid State Commun., 132, 235 (2004); https://doi.org/10.1016/j.ssc.2004.07.042
- L.S. Rao, M.S. Reddy, M.R. Reddy and N. Veeraiah, J. Alloys Compd., 464, 472 (2008); https://doi.org/10.1016/j.jallcom.2007.10.016
- H. Darwish and M.M. Gomaa, J. Mater. Sci. Mater. Electron., 17, 35 (2006); https://doi.org/10.1007/s10854-005-5139-2
- Y. Cheng, H. Xiao, W. Guo and W. Guo, Ceram. Int., 33, 1341 (2007); https://doi.org/10.1016/j.ceramint.2006.04.025
- A.K. Hassan, L. Borjesson and L.M. Torell, J. Non-Cryst. Solids, 172/174, 154 (1994); https://doi.org/10.1016/0022-3093(94)90427-8
- E.I. Kamitsos, A.P. Patsis, M.A. Karakassides and G.D. Chryssikos, J. Non-Cryst. Solids, 126, 52 (1990); https://doi.org/10.1016/0022-3093(90)91023-K
- D.L. Griscom, Glass Sci., 4, 151 (1990); https://doi.org/10.1016/B978-0-12-706707-0.50010-4
- H. Rawson, Inorganic Glass Forming Systems, Academic Press: New York (1967).
- B.B. Das and R. Ambika, Chem. Phys. Lett., 370, 670 (2003); https://doi.org/10.1016/S0009-2614(03)00077-0
- J.S. Kumar, V. Madhuri, J.L. Kumari and S. Cole, Appl. Magn. Reson., 44, 479 (2013); https://doi.org/10.1007/s00723-012-0409-7
- A. Fluegel, J. Am. Ceram. Soc., 90, 2622 (2007); https://doi.org/10.1111/j.1551-2916.2007.01751.x
- Y. Linard, H. Nonnet and T. Advocat, J. Non-Cryst. Solids, 354, 4917 (2008); https://doi.org/10.1016/j.jnoncrysol.2008.07.013
- S. Sindhu, S. Sanghi, A. Agarwal, V.P. Seth and N. Kishore, Mater. Chem. Phys., 90, 83 (2005); https://doi.org/10.1016/j.matchemphys.2004.10.013
- A. Goldstein, V. Chiriac and D. Becherescu, J. Non-Cryst. Solids, 92, 271 (1987); https://doi.org/10.1016/S0022-3093(87)80044-3
- L. Bih, A. Nadiri, M. El Omari, A. Yacoubi and M. Haddad, Phys. Chem. Glasses, 43, 153 (2002).
- L. Bih, L. Abbas, A. Nadiri, H. Khemakhem and B. Elouadi, J. Mol. Struct., 872, 1 (2008); https://doi.org/10.1016/j.molstruc.2007.02.005
- E.G. De Sousa, S.K. Mendiratta and J.M.M. Da Silva, Portugal Phys., 17, 203 (1986).
- L. Pauling, The Nature of Chemical Bond, Cornell University Press, New York, edn. 3, p. 63 (1960).
- J. Wong and C.A. Angell, Glass Structure by Spectroscopy, Marcel Dekker: New York (1976).
- F.A. Khalifa, H.A. El-Batal and M.A. Azooz, Indian J. Pure Appl. Phys., 36, 314 (1998).
- J.S. Kumar, J.L. Kumari, M.S. Rao and S. Cole, Opt. Mater., 35, 1320 (2013); https://doi.org/10.1016/j.optmat.2013.01.012
- G. Fuxi, Optical and Spectroscopic Properties of Glasses, Springer, Berlin, p. 62 (1992).
- P. Nachimuthu, P. Harikrishnan and R. Jagannathan, Phys. Chem. Glasses, 38, 59 (1996).
- E.A. Davis and N.F. Mott, Philos. Mag., 22, 903 (1970); https://doi.org/10.1080/14786437008221061
- K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, edn 2, Wiley: New York, p. 98 (1963).
References
Q. Zeng, H. Sheng, Y. Ding, L. Wang, W.Yang, J.-Z. Jiang, W.L. Mao and H.-K. Mao, Science, 332, 1404 (2011); https://doi.org/10.1126/science.120032
X. Lu, J.D. Vienna and J. Du, J. Am. Ceram. Soc., 107, 1603 (2024); https://doi.org/10.1111/jace.19333
B. Karasu, I. Demirel, S. Aydin, M. Dalkiran and B. Lik, El-Cezerî J. Sci. Eng., 7, 940 (2020); https://doi.org/10.31202/ecjse.672615
Y.B. Saddeek, K.A. Aly and S.A. Bashier, Physica B, 405, 2407 (2010); https://doi.org/10.1016/j.physb.2010.02.055
S.A.M. Issa, H.O. Tekin, M.M. Hessien and Y.S. Rammah, J. Aust. Ceram. Soc., 58, 495 (2022); https://doi.org/10.1007/s41779-022-00706-5
D.A. McKeown, W.K. Kot and I.L. Pegg, J. Non-Cryst. Solids, 317, 290 (2003); https://doi.org/10.1016/S0022-3093(02)01816-1
R. Baylor Jr. and J.J. Brown Jr., J. Am. Ceram. Soc., 59, 131 (1976); https://doi.org/10.1111/j.1151-2916.1976.tb09449.x
S.V. Stolyar, N.G. Tyurnina, Z.G. Tyurnina and L.A. Doronina, Glass Phys. Chem., 34, 509 (2008); https://doi.org/10.1134/S1087659608040214
S.V. Stolyar and N.G. Tyurnina, Glass Phys. Chem., 35, 149 (2009); https://doi.org/10.1134/S1087659609020047
N.G. Tyurnina, Z.G. Tyurnina and S.I. Sviridov, Glass Phys. Chem., 35, 153 (2009); https://doi.org/10.1134/S1087659609020059
V.V. Golubkov, N.G. Tyurnina, Z.G. Tyurnina and V.L. Stolyarova, Glass Phys. Chem., 35, 455 (2009); https://doi.org/10.1134/S1087659609050010
Y. Liu, Y. Wang and J.S. Ma, Key Eng. Mater., 336–338, 783 (2007); https://doi.org/10.4028/www.scientific.net/KEM.336-338.783
C.-C. Chiang, S.-F. Wang, Y.-R. Wang and W.-C.J. Wei, Ceram. Int., 34, 599 (2008); https://doi.org/10.1016/j.ceramint.2006.12.008
H. Hirashima, Y. Watanabe and T. Yoshida, J. Non-Cryst. Solids, 95-96, 825 (1987); https://doi.org/10.1016/S0022-3093(87)80687-7
M.M. Ahmed, C.A. Hogarth and M.N. Khan, J. Mater. Sci., 19, 4040 (1984); https://doi.org/10.1007/BF00980769
N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford University Press: Oxford, edn, 2, p. 273 (1979).
J. Tauc, Amorphous and Liquid Semiconductor, Plenum: New York, (1974).
K. Subrahmanyam and M. Salagram, Opt. Mater., 15, 181 (2000); https://doi.org/10.1016/S0925-3467(00)00033-1
S. Simon and A.L. Nicula, J. Non-Cryst. Solids, 57, 23 (1983); https://doi.org/10.1016/0022-3093(83)90405-2
A.M. Efimov, J. Non-Cryst. Solids, 203, 1 (1996); https://doi.org/10.1016/0022-3093(96)00327-4
P.S. Prasad, B.V. Raghavaiah, R.B. Rao, C. Laxmikanth and N. Veeraiah, Solid State Commun., 132, 235 (2004); https://doi.org/10.1016/j.ssc.2004.07.042
L.S. Rao, M.S. Reddy, M.R. Reddy and N. Veeraiah, J. Alloys Compd., 464, 472 (2008); https://doi.org/10.1016/j.jallcom.2007.10.016
H. Darwish and M.M. Gomaa, J. Mater. Sci. Mater. Electron., 17, 35 (2006); https://doi.org/10.1007/s10854-005-5139-2
Y. Cheng, H. Xiao, W. Guo and W. Guo, Ceram. Int., 33, 1341 (2007); https://doi.org/10.1016/j.ceramint.2006.04.025
A.K. Hassan, L. Borjesson and L.M. Torell, J. Non-Cryst. Solids, 172/174, 154 (1994); https://doi.org/10.1016/0022-3093(94)90427-8
E.I. Kamitsos, A.P. Patsis, M.A. Karakassides and G.D. Chryssikos, J. Non-Cryst. Solids, 126, 52 (1990); https://doi.org/10.1016/0022-3093(90)91023-K
D.L. Griscom, Glass Sci., 4, 151 (1990); https://doi.org/10.1016/B978-0-12-706707-0.50010-4
H. Rawson, Inorganic Glass Forming Systems, Academic Press: New York (1967).
B.B. Das and R. Ambika, Chem. Phys. Lett., 370, 670 (2003); https://doi.org/10.1016/S0009-2614(03)00077-0
J.S. Kumar, V. Madhuri, J.L. Kumari and S. Cole, Appl. Magn. Reson., 44, 479 (2013); https://doi.org/10.1007/s00723-012-0409-7
A. Fluegel, J. Am. Ceram. Soc., 90, 2622 (2007); https://doi.org/10.1111/j.1551-2916.2007.01751.x
Y. Linard, H. Nonnet and T. Advocat, J. Non-Cryst. Solids, 354, 4917 (2008); https://doi.org/10.1016/j.jnoncrysol.2008.07.013
S. Sindhu, S. Sanghi, A. Agarwal, V.P. Seth and N. Kishore, Mater. Chem. Phys., 90, 83 (2005); https://doi.org/10.1016/j.matchemphys.2004.10.013
A. Goldstein, V. Chiriac and D. Becherescu, J. Non-Cryst. Solids, 92, 271 (1987); https://doi.org/10.1016/S0022-3093(87)80044-3
L. Bih, A. Nadiri, M. El Omari, A. Yacoubi and M. Haddad, Phys. Chem. Glasses, 43, 153 (2002).
L. Bih, L. Abbas, A. Nadiri, H. Khemakhem and B. Elouadi, J. Mol. Struct., 872, 1 (2008); https://doi.org/10.1016/j.molstruc.2007.02.005
E.G. De Sousa, S.K. Mendiratta and J.M.M. Da Silva, Portugal Phys., 17, 203 (1986).
L. Pauling, The Nature of Chemical Bond, Cornell University Press, New York, edn. 3, p. 63 (1960).
J. Wong and C.A. Angell, Glass Structure by Spectroscopy, Marcel Dekker: New York (1976).
F.A. Khalifa, H.A. El-Batal and M.A. Azooz, Indian J. Pure Appl. Phys., 36, 314 (1998).
J.S. Kumar, J.L. Kumari, M.S. Rao and S. Cole, Opt. Mater., 35, 1320 (2013); https://doi.org/10.1016/j.optmat.2013.01.012
G. Fuxi, Optical and Spectroscopic Properties of Glasses, Springer, Berlin, p. 62 (1992).
P. Nachimuthu, P. Harikrishnan and R. Jagannathan, Phys. Chem. Glasses, 38, 59 (1996).
E.A. Davis and N.F. Mott, Philos. Mag., 22, 903 (1970); https://doi.org/10.1080/14786437008221061
K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, edn 2, Wiley: New York, p. 98 (1963).