Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Triton-B Catalyzed One Pot Multicomponent Synthesis of Isothiocyanates in Non-Aqueous Medium
Corresponding Author(s) : Neha Singh
Asian Journal of Chemistry,
Vol. 31 No. 7 (2019): Vol 31 Issue 7
Abstract
A facile and novel method to synthesize isothiocyanides from cyclic and acyclic amines and carbon disulphide in DMSO with Triton-B as catalyst in non-aqueous medium is being reported. The method is less tedious and offers excellent yields. The structures have been elucidated by 1H NMR, 13C NMR and mass spectroscopy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Dufour, B. Alazzam, G. Ermel, M. Thepaut, A. Rossero, O. Tresse and C. Baysse, Front. Cell. Infect. Microbiol., 2, 53 (2012); https://doi.org/10.3389/fcimb.2012.00053.
- G.A. Carter, J.L. Garraway, D.M. Spencer and R.L. Wain, Ann. Appl. Biol., 51, 135 (1963); https://doi.org/10.1111/j.1744-7348.1963.tb03681.x.
- G.H. Posner, C.-G. Cho, J.V. Green, Y. Zhang and P. Talalay, J. Med. Chem., 37, 170 (1994); https://doi.org/10.1021/jm00027a021.
- J.T. Arnold, B.P. Wilkinson, S. Sharma and V.E. Steele, Cancer Res., 55, 537 (1995).
- A.M. Pintao, M.S. Pais, H. Coley, L.R. Kelland and I.R. Judson, Planta Med., 61, 233 (1995); https://doi.org/10.1055/s-2006-958062.
- S. Adsule, S. Banerjee, F. Ahmed, S. Padhye and F.H. Sarkar, Bioorg. Med. Chem. Lett., 20, 1247 (2010); https://doi.org/10.1016/j.bmcl.2009.11.128.
- C. Nastruzzi, R. Cortesi, E. Esposito, E. Menegatti, O. Leoni, R. Iori, and S. Palmieri, J. Agric. Food Chem., 48, 3572 (2000); https://doi.org/10.1021/jf000191p.
- G. Bian, W. Shan and W. Su, Chem. Res. Synop., 2005, 585 (2005); https://doi.org/10.3184/030823405774308862.
- X. Zhang, N. Neamati, Y. Lee, A. Orr, R.D. Brown, N. Whitaker, Y. Pommier and T.R. Burke Jr., Bioorg. Med. Chem., 9, 1649 (2001); https://doi.org/10.1016/S0968-0896(01)00075-X.
- S. Heckl, A. Sturzu, M. Regenbogen, A. Beck, G. Feil, A. Gharabaghi and H. Echner, Med. Chem., 4, 348 (2008); https://doi.org/10.2174/157340608784872217.
- S. Dong and M. Roman, J. Am. Chem. Soc., 129, 13810 (2007); https://doi.org/10.1021/ja076196l.
- H.-G. Lerchen, J. Baumgarten, N. Piel and V. Kolb-Bachofen, Angew. Chem. Int. Ed., 38, 3680 (1999); https://doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3680::AID-ANIE3680>3.0.CO;2-9.
- G. Sommen, Synlett, 7, 1323 (2004); https://doi.org/10.1055/s-2004-825608.
- A.K. Ghosh, G. Bilcer and G. Schiltz, Synthesis, 2203 (2001); https://doi.org/10.1055/s-2001-18434.
- M. Abass, Phosphorus Sulfur Silicon Rel. Elem., 178, 1413 (2003); https://doi.org/10.1080/10426500307880.
- E.A. Bakhitr, O. Ivlohamed and S.M. Radwan, Bull. Korean Chem. Soc., 23, 1715 (2002); https://doi.org/10.5012/bkcs.2002.23.12.1715.
- H.-W. Engels, H.-G. Pirkl, R. Albers, R.W. Albach, J. Krause, A. Hoffman, H. Casselmann and J. Dormish, Angew. Chem. Int. Ed., 52, 9422 (2013); https://doi.org/10.1002/anie.201302766.
- D. Xiao, A.A. Powolny and S.V. Singh, J. Biol. Chem., 283, 30151 (2008); https://doi.org/10.1074/jbc.M802529200.
- S.L. Cuddihy, K.K. Brown, S.J. Thomson and M.B. Hampton, Cancer Lett., 271, 215 (2008); https://doi.org/10.1016/j.canlet.2008.06.002.
- L.G. Wang, X.M. Liu, Y. Fang, W. Dai, F.B. Chiao, G.M. Puccio, J. Feng, D. Liu and J.W. Chiao, Int. J. Oncol., 33, 375 (2008); https://doi.org/10.3892/ijo_00000018.
- G.D. Stoner, A.A. Dombkowski, R.K. Reen, D. Cukovic, S. Salagrama, L.-S. Wang and J.F. Lechner, Cancer Res., 68, 6460 (2008); https://doi.org/10.1158/0008-5472.CAN-08-0146.
- A.M. Bones and J.T. Rossiter, Physiol. Plant., 97, 194 (1996); https://doi.org/10.1111/j.1399-3054.1996.tb00497.x.
- Y. Zhang, L Tang and V. Gonzalez, Mol. Cancer Ther., 2, 1045 (2003).
- D. Xiao, V. Vogel and S.V. Singh, Mol. Cancer Ther., 5, 2931 (2006); https://doi.org/10.1158/1535-7163.MCT-06-0396.
- K. Xu and P.J. Thornalley, Biochem. Pharmacol., 60, 221 (2000); https://doi.org/10.1016/S0006-2952(00)00319-1.
- A.K. Mukerjee and R. Ashare, Chem. Rev., 91, 1 (1991); https://doi.org/10.1021/cr00001a001.
- H. Stephensen and F. Zaragoza, J. Org. Chem., 62, 6096 (1997); https://doi.org/10.1021/jo9709155.
- B. Jawabrah Al-Hourani, K. Banert, N. Gomaa and K. Vrobel, Tetrahedron, 64, 5590 (2008); https://doi.org/10.1016/j.tet.2008.03.074.
- D. Fajkusova and P. Pazdera, Synthesis, 1297 (2008); https://doi.org/10.1055/s-2008-1067008.
- Y.-J. Wu and Y. Zhang, Tetrahedron Lett., 49, 2869 (2008); https://doi.org/10.1016/j.tetlet.2008.03.030.
- O.R. Thiel, C. Bernard, T. King, M. Dilmeghani-Seran, T. Bostick, R.D. Larsen and M.M. Faul, J. Org. Chem., 73, 3508 (2008); https://doi.org/10.1021/jo8002216.
- L. Prakash, S.S. Verma, E. Shaihla, E. Tyagi and R.L. Mital, J. Fluor. Chem., 41, 303 (1988); https://doi.org/10.1016/S0022-1139(00)81031-3.
- G.M. Dyson and H.J. George, J. Chem. Soc. Transac., 125, 1702 (1924); https://doi.org/10.1039/CT9242501702.
- J. Gilmore and P.T. Gallagher, eds.: A.R. Katritzky, O. Meth-Cohn and C.W. Rees, Comprehensive Organic Functional Group Transformations, Pergamon Press (Elsevier Science Ltd.): Tarrytown, NY, vol. 5, p. 1021 (1995).
- W.S. Wadsworth Jr. and W.D. Emmons, J. Org. Chem., 32, 1279 (1967); https://doi.org/10.1021/jo01280a001.
- T. Besson, J. Guillard, C.W. Rees and V. Thiery, J. Chem. Soc. Perkin Trans. I, 889 (1998); https://doi.org/10.1039/a707801c.
- N. Iranpoor, H. Firouzabadi and N. Nowrouzi, Tetrahedron, 62, 5498 (2006); https://doi.org/10.1016/j.tet.2006.03.030.
- N. Iranpoor, H. Firouzabadi, B. Akhlaghinia and R. Azadi, Synthesis, 92 (2004); https://doi.org/10.1055/s-2003-44369.
- H. Miyake, Y. Nakao and M. Sasaki, Chem. Lett., 35, 1262 (2006); https://doi.org/10.1246/cl.2006.1262.
- A.C. Chaskar, B.P. Bandgar, R.K. Modhave, A.B. Patil and S. Yewale, Synth. Commun., 39, 992 (2009); https://doi.org/10.1080/00397910802448481.
- R. Wong and S.J. Dolman, J. Org. Chem., 72, 3969 (2007); https://doi.org/10.1021/jo070246n.
- H.M. Mesheram, S. Dale and J.S. Yadav, Tetrahedron Lett., 38, 8743 (1997); https://doi.org/10.1016/S0040-4039(97)10158-7.
- G. Blotny, Liebigs Ann. Chem., 1982, 1927 (1982); https://doi.org/10.1002/jlac.198219821015.
- S. Sakai, T. Fujinami and T. Aizawa, Bull. Chem. Soc. Jpn., 48, 2981 (1975); https://doi.org/10.1246/bcsj.48.2981.
- T. Shibanuma, M. Shiono and T. Mukaiyama, Chem. Lett., 6, 573 (1977); https://doi.org/10.1246/cl.1977.573.
- P. Molina, M. Alajarin and A. Arques, Synthesis, 596 (1982); https://doi.org/10.1055/s-1982-29877.
- K. Jae Nyoung and E.K. Ryu, Tetrahedron Lett., 34, 8283 (1993); https://doi.org/10.1016/S0040-4039(00)61411-9.
- J.N. Kim, K.S. Jung, H.J. Lee and J.S. Son, Tetrahedron Lett., 38, 1597 (1997); https://doi.org/10.1016/S0040-4039(97)00121-4.
- J.N. Kim, J.H. Song and E.K. Ryu, Synth. Commun., 24, 1101 (1994); https://doi.org/10.1080/00397919408011704.
- S. Fujiwara, T. Shin-ike, N. Sonoda, M. Aoki, K. Okada, N. Miyoshi and N. Kambe, Tetrahedron Lett., 32, 3503 (1991); https://doi.org/10.1016/0040-4039(91)80817-P.
- S. Fujiwara, T. Shin-ike, K. Okada, M. Aoki, N. Kambe and N. Sonoda, Tetrahedron Lett., 33, 7021 (1992); https://doi.org/10.1016/S0040-4039(00)60922-X.
- W. Adam, A.M. Bargon, S.G. Bosio, W.A. Schenk and D. Stalke, J. Org. Chem., 67, 7037 (2002); https://doi.org/10.1021/jo026042i.
- L. Valette, S. Poulain, X. Fernandez and L. Lizzani-Cuvelier, J. Sulfur Chem., 26, 155 (2005); https://doi.org/10.1080/17415990500070144.
- S.A. Mayekar, A.C. Chaskar and V.V. Mulwad, Synth. Commun., 40, 46 (2010); https://doi.org/10.1080/00397910902916080.
- H. Eckert and B. Forster, Angew. Chem. Int. Ed. Engl., 26, 894 (1987); https://doi.org/10.1002/anie.198708941.
- G. Bian, H. Qiu, J. Jiang, J. Wu and G. Lai, Phosphorus Sulfur Silicon Rel. Elem., 182, 503 (2007); https://doi.org/10.1080/10426500600977379.
- H. Munch, J.S. Hansen, M. Pittelkow, J.B. Christensen and U. Boas, Tetrahedron Lett., 49, 3117 (2008); https://doi.org/10.1016/j.tetlet.2008.03.045.
- P. Liu, C. Li, J. Zhang and X. Xu, Synth. Commun., 43, 3342 (2013); https://doi.org/10.1080/00397911.2013.783600.
References
V. Dufour, B. Alazzam, G. Ermel, M. Thepaut, A. Rossero, O. Tresse and C. Baysse, Front. Cell. Infect. Microbiol., 2, 53 (2012); https://doi.org/10.3389/fcimb.2012.00053.
G.A. Carter, J.L. Garraway, D.M. Spencer and R.L. Wain, Ann. Appl. Biol., 51, 135 (1963); https://doi.org/10.1111/j.1744-7348.1963.tb03681.x.
G.H. Posner, C.-G. Cho, J.V. Green, Y. Zhang and P. Talalay, J. Med. Chem., 37, 170 (1994); https://doi.org/10.1021/jm00027a021.
J.T. Arnold, B.P. Wilkinson, S. Sharma and V.E. Steele, Cancer Res., 55, 537 (1995).
A.M. Pintao, M.S. Pais, H. Coley, L.R. Kelland and I.R. Judson, Planta Med., 61, 233 (1995); https://doi.org/10.1055/s-2006-958062.
S. Adsule, S. Banerjee, F. Ahmed, S. Padhye and F.H. Sarkar, Bioorg. Med. Chem. Lett., 20, 1247 (2010); https://doi.org/10.1016/j.bmcl.2009.11.128.
C. Nastruzzi, R. Cortesi, E. Esposito, E. Menegatti, O. Leoni, R. Iori, and S. Palmieri, J. Agric. Food Chem., 48, 3572 (2000); https://doi.org/10.1021/jf000191p.
G. Bian, W. Shan and W. Su, Chem. Res. Synop., 2005, 585 (2005); https://doi.org/10.3184/030823405774308862.
X. Zhang, N. Neamati, Y. Lee, A. Orr, R.D. Brown, N. Whitaker, Y. Pommier and T.R. Burke Jr., Bioorg. Med. Chem., 9, 1649 (2001); https://doi.org/10.1016/S0968-0896(01)00075-X.
S. Heckl, A. Sturzu, M. Regenbogen, A. Beck, G. Feil, A. Gharabaghi and H. Echner, Med. Chem., 4, 348 (2008); https://doi.org/10.2174/157340608784872217.
S. Dong and M. Roman, J. Am. Chem. Soc., 129, 13810 (2007); https://doi.org/10.1021/ja076196l.
H.-G. Lerchen, J. Baumgarten, N. Piel and V. Kolb-Bachofen, Angew. Chem. Int. Ed., 38, 3680 (1999); https://doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3680::AID-ANIE3680>3.0.CO;2-9.
G. Sommen, Synlett, 7, 1323 (2004); https://doi.org/10.1055/s-2004-825608.
A.K. Ghosh, G. Bilcer and G. Schiltz, Synthesis, 2203 (2001); https://doi.org/10.1055/s-2001-18434.
M. Abass, Phosphorus Sulfur Silicon Rel. Elem., 178, 1413 (2003); https://doi.org/10.1080/10426500307880.
E.A. Bakhitr, O. Ivlohamed and S.M. Radwan, Bull. Korean Chem. Soc., 23, 1715 (2002); https://doi.org/10.5012/bkcs.2002.23.12.1715.
H.-W. Engels, H.-G. Pirkl, R. Albers, R.W. Albach, J. Krause, A. Hoffman, H. Casselmann and J. Dormish, Angew. Chem. Int. Ed., 52, 9422 (2013); https://doi.org/10.1002/anie.201302766.
D. Xiao, A.A. Powolny and S.V. Singh, J. Biol. Chem., 283, 30151 (2008); https://doi.org/10.1074/jbc.M802529200.
S.L. Cuddihy, K.K. Brown, S.J. Thomson and M.B. Hampton, Cancer Lett., 271, 215 (2008); https://doi.org/10.1016/j.canlet.2008.06.002.
L.G. Wang, X.M. Liu, Y. Fang, W. Dai, F.B. Chiao, G.M. Puccio, J. Feng, D. Liu and J.W. Chiao, Int. J. Oncol., 33, 375 (2008); https://doi.org/10.3892/ijo_00000018.
G.D. Stoner, A.A. Dombkowski, R.K. Reen, D. Cukovic, S. Salagrama, L.-S. Wang and J.F. Lechner, Cancer Res., 68, 6460 (2008); https://doi.org/10.1158/0008-5472.CAN-08-0146.
A.M. Bones and J.T. Rossiter, Physiol. Plant., 97, 194 (1996); https://doi.org/10.1111/j.1399-3054.1996.tb00497.x.
Y. Zhang, L Tang and V. Gonzalez, Mol. Cancer Ther., 2, 1045 (2003).
D. Xiao, V. Vogel and S.V. Singh, Mol. Cancer Ther., 5, 2931 (2006); https://doi.org/10.1158/1535-7163.MCT-06-0396.
K. Xu and P.J. Thornalley, Biochem. Pharmacol., 60, 221 (2000); https://doi.org/10.1016/S0006-2952(00)00319-1.
A.K. Mukerjee and R. Ashare, Chem. Rev., 91, 1 (1991); https://doi.org/10.1021/cr00001a001.
H. Stephensen and F. Zaragoza, J. Org. Chem., 62, 6096 (1997); https://doi.org/10.1021/jo9709155.
B. Jawabrah Al-Hourani, K. Banert, N. Gomaa and K. Vrobel, Tetrahedron, 64, 5590 (2008); https://doi.org/10.1016/j.tet.2008.03.074.
D. Fajkusova and P. Pazdera, Synthesis, 1297 (2008); https://doi.org/10.1055/s-2008-1067008.
Y.-J. Wu and Y. Zhang, Tetrahedron Lett., 49, 2869 (2008); https://doi.org/10.1016/j.tetlet.2008.03.030.
O.R. Thiel, C. Bernard, T. King, M. Dilmeghani-Seran, T. Bostick, R.D. Larsen and M.M. Faul, J. Org. Chem., 73, 3508 (2008); https://doi.org/10.1021/jo8002216.
L. Prakash, S.S. Verma, E. Shaihla, E. Tyagi and R.L. Mital, J. Fluor. Chem., 41, 303 (1988); https://doi.org/10.1016/S0022-1139(00)81031-3.
G.M. Dyson and H.J. George, J. Chem. Soc. Transac., 125, 1702 (1924); https://doi.org/10.1039/CT9242501702.
J. Gilmore and P.T. Gallagher, eds.: A.R. Katritzky, O. Meth-Cohn and C.W. Rees, Comprehensive Organic Functional Group Transformations, Pergamon Press (Elsevier Science Ltd.): Tarrytown, NY, vol. 5, p. 1021 (1995).
W.S. Wadsworth Jr. and W.D. Emmons, J. Org. Chem., 32, 1279 (1967); https://doi.org/10.1021/jo01280a001.
T. Besson, J. Guillard, C.W. Rees and V. Thiery, J. Chem. Soc. Perkin Trans. I, 889 (1998); https://doi.org/10.1039/a707801c.
N. Iranpoor, H. Firouzabadi and N. Nowrouzi, Tetrahedron, 62, 5498 (2006); https://doi.org/10.1016/j.tet.2006.03.030.
N. Iranpoor, H. Firouzabadi, B. Akhlaghinia and R. Azadi, Synthesis, 92 (2004); https://doi.org/10.1055/s-2003-44369.
H. Miyake, Y. Nakao and M. Sasaki, Chem. Lett., 35, 1262 (2006); https://doi.org/10.1246/cl.2006.1262.
A.C. Chaskar, B.P. Bandgar, R.K. Modhave, A.B. Patil and S. Yewale, Synth. Commun., 39, 992 (2009); https://doi.org/10.1080/00397910802448481.
R. Wong and S.J. Dolman, J. Org. Chem., 72, 3969 (2007); https://doi.org/10.1021/jo070246n.
H.M. Mesheram, S. Dale and J.S. Yadav, Tetrahedron Lett., 38, 8743 (1997); https://doi.org/10.1016/S0040-4039(97)10158-7.
G. Blotny, Liebigs Ann. Chem., 1982, 1927 (1982); https://doi.org/10.1002/jlac.198219821015.
S. Sakai, T. Fujinami and T. Aizawa, Bull. Chem. Soc. Jpn., 48, 2981 (1975); https://doi.org/10.1246/bcsj.48.2981.
T. Shibanuma, M. Shiono and T. Mukaiyama, Chem. Lett., 6, 573 (1977); https://doi.org/10.1246/cl.1977.573.
P. Molina, M. Alajarin and A. Arques, Synthesis, 596 (1982); https://doi.org/10.1055/s-1982-29877.
K. Jae Nyoung and E.K. Ryu, Tetrahedron Lett., 34, 8283 (1993); https://doi.org/10.1016/S0040-4039(00)61411-9.
J.N. Kim, K.S. Jung, H.J. Lee and J.S. Son, Tetrahedron Lett., 38, 1597 (1997); https://doi.org/10.1016/S0040-4039(97)00121-4.
J.N. Kim, J.H. Song and E.K. Ryu, Synth. Commun., 24, 1101 (1994); https://doi.org/10.1080/00397919408011704.
S. Fujiwara, T. Shin-ike, N. Sonoda, M. Aoki, K. Okada, N. Miyoshi and N. Kambe, Tetrahedron Lett., 32, 3503 (1991); https://doi.org/10.1016/0040-4039(91)80817-P.
S. Fujiwara, T. Shin-ike, K. Okada, M. Aoki, N. Kambe and N. Sonoda, Tetrahedron Lett., 33, 7021 (1992); https://doi.org/10.1016/S0040-4039(00)60922-X.
W. Adam, A.M. Bargon, S.G. Bosio, W.A. Schenk and D. Stalke, J. Org. Chem., 67, 7037 (2002); https://doi.org/10.1021/jo026042i.
L. Valette, S. Poulain, X. Fernandez and L. Lizzani-Cuvelier, J. Sulfur Chem., 26, 155 (2005); https://doi.org/10.1080/17415990500070144.
S.A. Mayekar, A.C. Chaskar and V.V. Mulwad, Synth. Commun., 40, 46 (2010); https://doi.org/10.1080/00397910902916080.
H. Eckert and B. Forster, Angew. Chem. Int. Ed. Engl., 26, 894 (1987); https://doi.org/10.1002/anie.198708941.
G. Bian, H. Qiu, J. Jiang, J. Wu and G. Lai, Phosphorus Sulfur Silicon Rel. Elem., 182, 503 (2007); https://doi.org/10.1080/10426500600977379.
H. Munch, J.S. Hansen, M. Pittelkow, J.B. Christensen and U. Boas, Tetrahedron Lett., 49, 3117 (2008); https://doi.org/10.1016/j.tetlet.2008.03.045.
P. Liu, C. Li, J. Zhang and X. Xu, Synth. Commun., 43, 3342 (2013); https://doi.org/10.1080/00397911.2013.783600.