Copyright (c) 2025 Milind Jagannath Pimpale, Hemant P. Narkhede, Suvidha R. Phalak

This work is licensed under a Creative Commons Attribution 4.0 International License.
Design and Synthesis of Novel 2-Chloro-5-(chloromethyl)pyridine Bioactive Derivatives by Rapid and Efficient Continuous Flow Reaction Module
Corresponding Author(s) : Hemant P. Narkhede
Asian Journal of Chemistry,
Vol. 37 No. 5 (2025): Vol 37 Issue 5, 2025
Abstract
This study explores the synthesis of new bioactive compounds from the key intermediate 2-chloro-5-(hydrazinylmethyl)pyridine by reacting with various aromatic aldehydes. The process started with 2-chloro-5-(chloromethyl)pyridine, which was used in a flow reactor for a continuous and efficient reaction. The key intermediate, 2-chloro-5-(hydrazinylmethyl)pyridine, was synthesized via a straightforward method and then reacted with aromatic aldehydes under mild conditions to form hydrazone compounds. The compounds were characterized with FTIR, NMR and mass spectroscopic techniques. Preliminary testing showed the promising biological activities, including potential antimicrobial and anti-malarial effects, suggesting their utility in the drug development.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.R. Shaikh, M. Farooqui, R.H. Satpute and S. Abed, J. Drug Deliv. Ther., 8(6-s), 424 (2018); https://doi.org/10.22270/jddt.v8i6-s.2156
- J.F. Campos and S. Berteina-Raboin, Catalysts, 10, 429 (2020); https://doi.org/10.3390/catal10040429
- M.B. Islam, M.I. Islam, N. Nath, T.B. Emran, M.R. Rahman, R. Sharma and M.M. Matin, BioMed Res. Int., 2023, 9967591 (2023); https://doi.org/10.1155/2023/9967591
- R. Porta, M. Benaglia and A. Puglisi, Org. Process Res. Dev., 20, 2 (2016); https://doi.org/10.1021/acs.oprd.5b00325
- S. Gharge and S.G. Alegaon, Chem. Biodiver., 21, e202301738 (2024); https://doi.org/10.1002/cbdv.202301738
- K.A.I. Alfano, S. Pelliccia, G. Rossino, O. Chianese, V. Summa, S. Collina and M. Brindisi, ACS Med. Chem. Lett., 14, 326 (2023); https://doi.org/10.1021/acsmedchemlett.3c00010
- K. Donnelly and M. Baumann, J. Flow Chem., 11, 223 (2021); https://doi.org/10.1007/s41981-021-00168-z
- C. Wiles and P. Watts, Green Chem., 16, 55 (2014); https://doi.org/10.1039/C3GC41797B
- C. Mateos, J.A. Rincón and J. Villanueva, Tetrahedron Lett., 54, 2226 (2013); https://doi.org/10.1016/j.tetlet.2013.02.069
- P. Watts and C. Wiles, J. Chem. Res., 36, 181 (2012); https://doi.org/10.3184/174751912X13311365798808
- T.N. Glasnov and C.O. Kappe, J. Heterocycl. Chem., 48, 11 (2011); https://doi.org/10.1002/jhet.568
- F. Fanelli, G. Parisi, L. Degennaro and R. Luisi, Beilstein J. Org. Chem., 13, 520 (2017); https://doi.org/10.3762/bjoc.13.51
- A. Nagaraj and C. Sanjeeva Reddy, J. Indian Chem. Soc., 5, 262 (2008); https://doi.org/10.1007%2FBF03246116
- L. Amini-Rentsch, E. Vanoli, S. Richard-Bildstein, R. Marti and G. Vilé, Ind. Eng. Chem. Res., 58, 10164 (2019); https://doi.org/10.1021/acs.iecr.9b01906
- D. Webb and T.F. Jamison, Chem. Sci. (Camb.), 1, 675 (2010); https://doi.org/10.1039/c0sc00381f
- P. Wayne, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Standard; CLSI Document M27-A2; Clinical and Laboratory Standards Institute: Wayne, PA, USA (2002).
- K.H. Rieckmann, G.H. Campbell, L.J. Sax and J.E. Ema, The Lancet, 311, 22 (1978); https://doi.org/10.1016/S0140-6736(78)90365-3
References
A.R. Shaikh, M. Farooqui, R.H. Satpute and S. Abed, J. Drug Deliv. Ther., 8(6-s), 424 (2018); https://doi.org/10.22270/jddt.v8i6-s.2156
J.F. Campos and S. Berteina-Raboin, Catalysts, 10, 429 (2020); https://doi.org/10.3390/catal10040429
M.B. Islam, M.I. Islam, N. Nath, T.B. Emran, M.R. Rahman, R. Sharma and M.M. Matin, BioMed Res. Int., 2023, 9967591 (2023); https://doi.org/10.1155/2023/9967591
R. Porta, M. Benaglia and A. Puglisi, Org. Process Res. Dev., 20, 2 (2016); https://doi.org/10.1021/acs.oprd.5b00325
S. Gharge and S.G. Alegaon, Chem. Biodiver., 21, e202301738 (2024); https://doi.org/10.1002/cbdv.202301738
K.A.I. Alfano, S. Pelliccia, G. Rossino, O. Chianese, V. Summa, S. Collina and M. Brindisi, ACS Med. Chem. Lett., 14, 326 (2023); https://doi.org/10.1021/acsmedchemlett.3c00010
K. Donnelly and M. Baumann, J. Flow Chem., 11, 223 (2021); https://doi.org/10.1007/s41981-021-00168-z
C. Wiles and P. Watts, Green Chem., 16, 55 (2014); https://doi.org/10.1039/C3GC41797B
C. Mateos, J.A. Rincón and J. Villanueva, Tetrahedron Lett., 54, 2226 (2013); https://doi.org/10.1016/j.tetlet.2013.02.069
P. Watts and C. Wiles, J. Chem. Res., 36, 181 (2012); https://doi.org/10.3184/174751912X13311365798808
T.N. Glasnov and C.O. Kappe, J. Heterocycl. Chem., 48, 11 (2011); https://doi.org/10.1002/jhet.568
F. Fanelli, G. Parisi, L. Degennaro and R. Luisi, Beilstein J. Org. Chem., 13, 520 (2017); https://doi.org/10.3762/bjoc.13.51
A. Nagaraj and C. Sanjeeva Reddy, J. Indian Chem. Soc., 5, 262 (2008); https://doi.org/10.1007%2FBF03246116
L. Amini-Rentsch, E. Vanoli, S. Richard-Bildstein, R. Marti and G. Vilé, Ind. Eng. Chem. Res., 58, 10164 (2019); https://doi.org/10.1021/acs.iecr.9b01906
D. Webb and T.F. Jamison, Chem. Sci. (Camb.), 1, 675 (2010); https://doi.org/10.1039/c0sc00381f
P. Wayne, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Standard; CLSI Document M27-A2; Clinical and Laboratory Standards Institute: Wayne, PA, USA (2002).
K.H. Rieckmann, G.H. Campbell, L.J. Sax and J.E. Ema, The Lancet, 311, 22 (1978); https://doi.org/10.1016/S0140-6736(78)90365-3