Copyright (c) 2025 Randhir Rai, Rangineni Vennela, Mohith Thalari Adarath, Bhuvanesh Kumar Himachalam

This work is licensed under a Creative Commons Attribution 4.0 International License.
Catalytic Application of Benedict Reaction Waste in Laboratory Wastewater Treatment and Recycling: A Circular Chemical Economy
Corresponding Author(s) : Randhir Rai
Asian Journal of Chemistry,
Vol. 37 No. 5 (2025): Vol 37 Issue 5, 2025
Abstract
In this study, cuprous oxide was isolated from the Benedict reaction waste and characterized by powder X-ray diffraction and scanning electron microscopic techniques. The isolated material was used as a catalyst for the reductive decomposition of methyl orange using sodium borohydride as a reducing agent. In situ formed copper from cuprous oxide catalyzed the dye decomposition reaction and its catalytic performance was compared with commercial copper powder. The catalyst was recycled and reused up to five catalytic cycles without losing its catalytic activity. The same material was also used as a catalyst for treating laboratory wastewater contaminated with methyl orange to promote a circular economy and sustainable waste management in academia. The unused Cu2O was further converted to Benedict’s reagent to increase the net life cycle of copper.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Nishat, M. Yusuf, A. Qadir, Y. Ezaier, V. Vambol, M. Ijaz Khan, S. Ben Moussa, H. Kamyab, S.S. Sehgal, C. Prakash, H.-H. Yang, H. Ibrahim and S.M. Eldin, Alex. Eng. J., 76, 505 (2023); https://doi.org/10.1016/j.aej.2023.06.054
- F.-C. Mihai and I. Minea, Sustainability, 13, 10574 (2021); https://doi.org/10.3390/su131910574
- B.G. Fouda-Mbanga, T. Velempini, K. Pillay and Z. Tywabi-Ngeva, Hybrid Advances, 6, 100193 (2024); https://doi.org/10.1016/j.hybadv.2024.100193
- S. Dutta, B. Gupta, S.K. Srivastava and A.K. Gupta, Mater. Adv., 2, 4497 (2021); https://doi.org/10.1039/D1MA00354B
- K. Samal, S. Mahapatra and M. Hibzur Ali, Energy Nexus, 6, 100076 (2022); https://doi.org/10.1016/j.nexus.2022.100076
- A.P.M. Velenturf and P. Purnell, Sustain. Prod. Consum., 27, 1437 (2021); https://doi.org/10.1016/j.spc.2021.02.018
- H.U. Sverdrup, K.V. Ragnarsdottir and D. Koca, Resour. Conserv. Recycling, 87, 158 (2014); https://doi.org/10.1016/j.resconrec.2014.03.007
- C.V. Montoya-Bautista, E. Avella, R.-M. Ramírez-Zamora and R. Schouwenaars, Sustainability, 11, 2470 (2019); https://doi.org/10.3390/su11092470
- K.G.N. Quiton, M.-C. Lu and Y.-H. Huang, Chemosphere, 262, 128371 (2021); https://doi.org/10.1016/j.chemosphere.2020.128371
- S. Hussain, E. Aneggi and D. Goi, Environ. Chem. Lett., 19, 2405 (2021); https://doi.org/10.1007/s10311-021-01185-z
- M.A. Nascimento, J. Castro Cruz, M.F. dos Reis, O.I. de Carvalho Damasceno, E. Lázaro Reis, C. Reis, A.F. de Oliveira and R. Pereira Lopes, J. Environ. Chem. Eng., 6, 5580 (2018); https://doi.org/10.1016/j.jece.2018.08.056
- C. Wang, Y. Cao and H. Wang, Chemosphere, 230, 278 (2019); https://doi.org/10.1016/j.chemosphere.2019.05.068
- T.A.G. Martins, I.B.A. Falconi, G. Pavoski, V.T. de Moraes, M.P. Galluzzi-Baltazar and D.C.R. Espinosa, J. Environ. Chem. Eng., 9, 106576 (2021); https://doi.org/10.1016/j.jece.2021.106576
- T.T.N. Vu, A. Desgagn’es, P. Fongarland and M.C. Iliuta, Int. J. Hydrogen Energy, 47, 38170 (2022); https://doi.org/10.1016/j.ijhydene.2022.09.001
- H. Fehling, Justus Liebigs Ann. Chem., 72, 106 (1849); https://doi.org/10.1002/jlac.18490720112
- C. Barfoed, Anal. Bioanal. Chem., 12, 27 (1873); https://doi.org/10.1007/BF01462957
- S.R. Benedict, J. Biol. Chem., 5, 485 (1909); https://doi.org/10.1016/S0021-9258(18)91645-5
- R. Rai, J. Clean. Prod., 432, 139775 (2023); https://doi.org/10.1016/j.jclepro.2023.139775
- R. Rai, Sustain. Chem. Environ., 9, 100205 (2025); https://doi.org/10.1016/j.scenv.2024.100205
- J.B. Fathima, A. Pugazhendhi, M. Oves and R. Venis, J. Mol. Liq., 260, 1 (2018); https://doi.org/10.1016/j.molliq.2018.03.033
- A.A. Kalicharan, A. Kistan, S. Jothilakshmi, S. Rekha and S. Mohan, Rasayan J. Chem., 17, 1416 (2024); https://doi.org/10.31788/RJC.2024.1748906
- M. Majadleh, T. Shahwan, R.B. Ahmed and M. Anjass, Water Resour. Ind., 28, 100189 (2022); https://doi.org/10.1016/j.wri.2022.100189
- R. Rai and D.K. Chand, J. Chem. Sci., 133, 87 (2021); https://doi.org/10.1007/s12039-021-01940-3
References
A. Nishat, M. Yusuf, A. Qadir, Y. Ezaier, V. Vambol, M. Ijaz Khan, S. Ben Moussa, H. Kamyab, S.S. Sehgal, C. Prakash, H.-H. Yang, H. Ibrahim and S.M. Eldin, Alex. Eng. J., 76, 505 (2023); https://doi.org/10.1016/j.aej.2023.06.054
F.-C. Mihai and I. Minea, Sustainability, 13, 10574 (2021); https://doi.org/10.3390/su131910574
B.G. Fouda-Mbanga, T. Velempini, K. Pillay and Z. Tywabi-Ngeva, Hybrid Advances, 6, 100193 (2024); https://doi.org/10.1016/j.hybadv.2024.100193
S. Dutta, B. Gupta, S.K. Srivastava and A.K. Gupta, Mater. Adv., 2, 4497 (2021); https://doi.org/10.1039/D1MA00354B
K. Samal, S. Mahapatra and M. Hibzur Ali, Energy Nexus, 6, 100076 (2022); https://doi.org/10.1016/j.nexus.2022.100076
A.P.M. Velenturf and P. Purnell, Sustain. Prod. Consum., 27, 1437 (2021); https://doi.org/10.1016/j.spc.2021.02.018
H.U. Sverdrup, K.V. Ragnarsdottir and D. Koca, Resour. Conserv. Recycling, 87, 158 (2014); https://doi.org/10.1016/j.resconrec.2014.03.007
C.V. Montoya-Bautista, E. Avella, R.-M. Ramírez-Zamora and R. Schouwenaars, Sustainability, 11, 2470 (2019); https://doi.org/10.3390/su11092470
K.G.N. Quiton, M.-C. Lu and Y.-H. Huang, Chemosphere, 262, 128371 (2021); https://doi.org/10.1016/j.chemosphere.2020.128371
S. Hussain, E. Aneggi and D. Goi, Environ. Chem. Lett., 19, 2405 (2021); https://doi.org/10.1007/s10311-021-01185-z
M.A. Nascimento, J. Castro Cruz, M.F. dos Reis, O.I. de Carvalho Damasceno, E. Lázaro Reis, C. Reis, A.F. de Oliveira and R. Pereira Lopes, J. Environ. Chem. Eng., 6, 5580 (2018); https://doi.org/10.1016/j.jece.2018.08.056
C. Wang, Y. Cao and H. Wang, Chemosphere, 230, 278 (2019); https://doi.org/10.1016/j.chemosphere.2019.05.068
T.A.G. Martins, I.B.A. Falconi, G. Pavoski, V.T. de Moraes, M.P. Galluzzi-Baltazar and D.C.R. Espinosa, J. Environ. Chem. Eng., 9, 106576 (2021); https://doi.org/10.1016/j.jece.2021.106576
T.T.N. Vu, A. Desgagn’es, P. Fongarland and M.C. Iliuta, Int. J. Hydrogen Energy, 47, 38170 (2022); https://doi.org/10.1016/j.ijhydene.2022.09.001
H. Fehling, Justus Liebigs Ann. Chem., 72, 106 (1849); https://doi.org/10.1002/jlac.18490720112
C. Barfoed, Anal. Bioanal. Chem., 12, 27 (1873); https://doi.org/10.1007/BF01462957
S.R. Benedict, J. Biol. Chem., 5, 485 (1909); https://doi.org/10.1016/S0021-9258(18)91645-5
R. Rai, J. Clean. Prod., 432, 139775 (2023); https://doi.org/10.1016/j.jclepro.2023.139775
R. Rai, Sustain. Chem. Environ., 9, 100205 (2025); https://doi.org/10.1016/j.scenv.2024.100205
J.B. Fathima, A. Pugazhendhi, M. Oves and R. Venis, J. Mol. Liq., 260, 1 (2018); https://doi.org/10.1016/j.molliq.2018.03.033
A.A. Kalicharan, A. Kistan, S. Jothilakshmi, S. Rekha and S. Mohan, Rasayan J. Chem., 17, 1416 (2024); https://doi.org/10.31788/RJC.2024.1748906
M. Majadleh, T. Shahwan, R.B. Ahmed and M. Anjass, Water Resour. Ind., 28, 100189 (2022); https://doi.org/10.1016/j.wri.2022.100189
R. Rai and D.K. Chand, J. Chem. Sci., 133, 87 (2021); https://doi.org/10.1007/s12039-021-01940-3