Copyright (c) 2025 Dr. Gandharve Kumar Kumar, Mohammad Farhan, Anil Kumar Singh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of FeWO4/BiOCl Nanocomposites for Photocatalysis and Cytotoxicity in CHO Cell Line
Corresponding Author(s) : Gandharve Kumar
Asian Journal of Chemistry,
Vol. 37 No. 4 (2025): Vol 37 Issue 4, 2025
Abstract
A novel FeWO4/BiOCl nanocomposite was prepared by hydrothermal route of synthesis and characterized by high-resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FESEM), powder X-ray diffraction (pXRD) and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS). Photocatalytic activity was evaluated by photocatalytic degradation of rhodamine B (RhB) under the irradiation of visible light. The biological activities such as cytotoxicity were investigated by propidium iodide (PI), a fluorescent dye, uptake and cellular uptake studies. The 15 wt.% FeWO4/BiOCl photocatalysts degraded 98% (RhB, 10 wt.%), whose degradation rate was 3.92 times and 7.34 times higher than that of BiOCl and FeWO4 photocatalysts, respectively. The synthesized FeWO4/BiOCl nanocomposite showed the cytotoxicity to Chinese Hamster Ovary (CHO) cells at concentration increase from 1 µg/mL to 75 µg/mL. In case of cellular uptake studies, FeWO4/BiOCl nanoparticles shows decreases cell viability after 24 h of exposure, as the concentration increase from 1-100 µg/mL.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Sharma and A. Bhattacharya, Appl. Water Sci., 7, 1043 (2017); https://doi.org/10.1007/s13201-016-0455-7
- F. Saadati, N. Keramati and M.M. Ghazi, Crit. Rev. Environ. Sci. Technol., 46, 757 (2016); https://doi.org/10.1080/10643389.2016.1159093
- S. Manzetti and R. Ghisi, Mar. Pollut. Bull., 79, 7 (2014); https://doi.org/10.1016/j.marpolbul.2014.01.005
- R. Zhang, J. Tang, J. Li, Z. Cheng, C. Chaemfa, D. Liu, Q. Zheng, M. Song, C. Luo and G. Zhang, Sci. Total Environ., 450-451, 197 (2013); https://doi.org/10.1016/j.scitotenv.2013.02.024
- J. Fick, H. Söderström, R.H. Lindberg, C. Phan, M. Tysklind and D.G.J. Larsson, Environ. Toxicol. Chem., 28, 2522 (2009); https://doi.org/10.1897/09-073.1
- I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot and D. Fatta Kassinos, Water Res., 47, 957 (2013); https://doi.org/10.1016/j.watres.2012.11.027
- Q.T. Dinh, E. Moreau-Guigon, P. Labadie, F. Alliot, M.-J. Teil, M. Blanchard and M. Chevreuil, Chemosphere, 168, 483 (2017); https://doi.org/10.1016/j.chemosphere.2016.10.106
- R. Daghrir and P. Drogui, Environ. Chem. Lett., 11, 209 (2013); https://doi.org/10.1007/s10311-013-0404-8
- M.J.F. Calvete, G. Piccirillo, C.S. Vinagreiro and M.M. Pereira, Coord. Chem. Rev., 395, 63 (2019); https://doi.org/10.1016/j.ccr.2019.05.004
- K. Qin, Q. Zhao, H. Yu, X. Xia, J. Li, S. He, L. Wei and T. An, Environ. Res., 199, 111360 (2021); https://doi.org/10.1016/j.envres.2021.111360
- M. Hojamberdiev, K.I. Katsumata, S.A. Bilmes, N. Matsushita, K. Morita and K. Okada, Appl. Catal. A Gen., 457, 12 (2013); https://doi.org/10.1016/j.apcata.2013.03.014
- F. Chen, Q. Yang, J. Sun, F. Yao, S. Wang, Y. Wang, X. Wang, X. Li, C. Niu, D. Wang and G. Zeng, ACS Appl. Mater. Interfaces, 8, 32887 (2016); https://doi.org/10.1021/acsami.6b12278
- G. Zhang, D. Chen, N. Li, Q. Xu, H. Li, J. He and J. Lu, Appl. Catal. B, 250, 313 (2019); https://doi.org/10.1016/j.apcatb.2019.03.055
- X. Gao, G. Huang, H. Gao, C. Pan, H. Wang, J. Yan, Y. Liu, H. Qiu, N. Ma and J. Gao, J. Alloys Compd., 674, 98 (2016); https://doi.org/10.1016/j.jallcom.2016.03.031
- A.P. Chowdhury and B.H. Shambharkar, Chem. Eng. J. Adv., 4, 100040 (2020); https://doi.org/10.1016/j.ceja.2020.100040
- X. Shi, L. Wang, A.A. Zuh, Y. Jia, F. Ding, H. Cheng and Q. Wang, J. Alloys Compd., 903, 163889 (2022); https://doi.org/10.1016/j.jallcom.2022.163889
- E. Grilla, M.N. Kagialari, A. Petala, Z. Frontistis and D. Mantzavinos, Catalysts, 11, 650 (2021); https://doi.org/10.3390/catal11060650
- Z. Zhang, A. Zada, N. Cui,N. Liu, M. Liu, Y. Yang, D. Jiang, J. Jiang, S. Liu, Crystals, 11, 981 (2021); https://doi.org/10.3390/cryst11080981
- X. Meng, L. Jiang, W. Wang and Z. Zhang, Int. J. Photoenergy, 2015, 747024 (2015); https://doi.org/10.1155/2015/747024
- F. Qiu, W. Li, F. Wang, H. Li, X. Liu and J. Sun, J. Colloid Interface Sci., 493, 1 (2017); https://doi.org/10.1016/j.jcis.2016.12.066
- J. Gao, Y. Gao, Z. Sui, Z. Dong, S. Wang and D. Zou, J. Alloys Compd., 732, 43 (2018); https://doi.org/10.1016/j.jallcom.2017.10.092
- G. Kumar, J. Inorg. Organomet. Polym. Mater., 33, 2710 (2023); https://doi.org/10.1007/s10904-023-02711-y
- W.H. Koppenol, D.M. Stanbury and P.L. Bounds, Free Radic. Biol. Med., 49, 317 (2010); https://doi.org/10.1016/j.freeradbiomed.2010.04.011
References
S. Sharma and A. Bhattacharya, Appl. Water Sci., 7, 1043 (2017); https://doi.org/10.1007/s13201-016-0455-7
F. Saadati, N. Keramati and M.M. Ghazi, Crit. Rev. Environ. Sci. Technol., 46, 757 (2016); https://doi.org/10.1080/10643389.2016.1159093
S. Manzetti and R. Ghisi, Mar. Pollut. Bull., 79, 7 (2014); https://doi.org/10.1016/j.marpolbul.2014.01.005
R. Zhang, J. Tang, J. Li, Z. Cheng, C. Chaemfa, D. Liu, Q. Zheng, M. Song, C. Luo and G. Zhang, Sci. Total Environ., 450-451, 197 (2013); https://doi.org/10.1016/j.scitotenv.2013.02.024
J. Fick, H. Söderström, R.H. Lindberg, C. Phan, M. Tysklind and D.G.J. Larsson, Environ. Toxicol. Chem., 28, 2522 (2009); https://doi.org/10.1897/09-073.1
I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot and D. Fatta Kassinos, Water Res., 47, 957 (2013); https://doi.org/10.1016/j.watres.2012.11.027
Q.T. Dinh, E. Moreau-Guigon, P. Labadie, F. Alliot, M.-J. Teil, M. Blanchard and M. Chevreuil, Chemosphere, 168, 483 (2017); https://doi.org/10.1016/j.chemosphere.2016.10.106
R. Daghrir and P. Drogui, Environ. Chem. Lett., 11, 209 (2013); https://doi.org/10.1007/s10311-013-0404-8
M.J.F. Calvete, G. Piccirillo, C.S. Vinagreiro and M.M. Pereira, Coord. Chem. Rev., 395, 63 (2019); https://doi.org/10.1016/j.ccr.2019.05.004
K. Qin, Q. Zhao, H. Yu, X. Xia, J. Li, S. He, L. Wei and T. An, Environ. Res., 199, 111360 (2021); https://doi.org/10.1016/j.envres.2021.111360
M. Hojamberdiev, K.I. Katsumata, S.A. Bilmes, N. Matsushita, K. Morita and K. Okada, Appl. Catal. A Gen., 457, 12 (2013); https://doi.org/10.1016/j.apcata.2013.03.014
F. Chen, Q. Yang, J. Sun, F. Yao, S. Wang, Y. Wang, X. Wang, X. Li, C. Niu, D. Wang and G. Zeng, ACS Appl. Mater. Interfaces, 8, 32887 (2016); https://doi.org/10.1021/acsami.6b12278
G. Zhang, D. Chen, N. Li, Q. Xu, H. Li, J. He and J. Lu, Appl. Catal. B, 250, 313 (2019); https://doi.org/10.1016/j.apcatb.2019.03.055
X. Gao, G. Huang, H. Gao, C. Pan, H. Wang, J. Yan, Y. Liu, H. Qiu, N. Ma and J. Gao, J. Alloys Compd., 674, 98 (2016); https://doi.org/10.1016/j.jallcom.2016.03.031
A.P. Chowdhury and B.H. Shambharkar, Chem. Eng. J. Adv., 4, 100040 (2020); https://doi.org/10.1016/j.ceja.2020.100040
X. Shi, L. Wang, A.A. Zuh, Y. Jia, F. Ding, H. Cheng and Q. Wang, J. Alloys Compd., 903, 163889 (2022); https://doi.org/10.1016/j.jallcom.2022.163889
E. Grilla, M.N. Kagialari, A. Petala, Z. Frontistis and D. Mantzavinos, Catalysts, 11, 650 (2021); https://doi.org/10.3390/catal11060650
Z. Zhang, A. Zada, N. Cui,N. Liu, M. Liu, Y. Yang, D. Jiang, J. Jiang, S. Liu, Crystals, 11, 981 (2021); https://doi.org/10.3390/cryst11080981
X. Meng, L. Jiang, W. Wang and Z. Zhang, Int. J. Photoenergy, 2015, 747024 (2015); https://doi.org/10.1155/2015/747024
F. Qiu, W. Li, F. Wang, H. Li, X. Liu and J. Sun, J. Colloid Interface Sci., 493, 1 (2017); https://doi.org/10.1016/j.jcis.2016.12.066
J. Gao, Y. Gao, Z. Sui, Z. Dong, S. Wang and D. Zou, J. Alloys Compd., 732, 43 (2018); https://doi.org/10.1016/j.jallcom.2017.10.092
G. Kumar, J. Inorg. Organomet. Polym. Mater., 33, 2710 (2023); https://doi.org/10.1007/s10904-023-02711-y
W.H. Koppenol, D.M. Stanbury and P.L. Bounds, Free Radic. Biol. Med., 49, 317 (2010); https://doi.org/10.1016/j.freeradbiomed.2010.04.011