Copyright (c) 2025 Hussein Hanibah, Xiaoyan Zhai, Nor Zakiah Nor Hashim

This work is licensed under a Creative Commons Attribution 4.0 International License.
Limiting Molar Conductivity Value for Binary and Ternary Electrolyte System Using Power Law
Corresponding Author(s) : Hussein Hanibah
Asian Journal of Chemistry,
Vol. 37 No. 4 (2025): Vol 37 Issue 4, 2025
Abstract
A new mathematic equation (Power Law) has been proposed by Hanibah et al. to determine the limiting molar conductivity (Λ0) value with a better accuracy for the liquid electrolyte system especially in an organic solvent. The proposed Power law is fulfilled to the basic linear graph equation for certain (finite) range of salt concentration (Csalt = 10–8–10–6 mol cm–3). It is observed that, reference salt concentration (Cref) for each system that corresponds to the Λ0 is approximately half that of the lowest Csalt and it still obeys the Power law before the data starts to divert from the linearity of the Power law. By using the proposed Power law equation, the Λ0 and ion mobility (K′) value for liquid polymer electrolyte (LPE) has been estimated. In order to estimate Λ0 value at 25 ºC for LiClO4 in liquid polymer electrolytes [poly(ethylene oxide) (PEO), poly(methyl methacrylate) (PMMA), poly(methylmethacrylate-co-methacrylic acid) (PMMA-co-MA)–binary system], [PEO5 blend with PMMA and PEO5 blend with PMMA-co-MA–ternary system], the Cref = 1.89 × 10–9 mol cm–3 is adopted. The κ value of the LiClO4 in polymer solutions was measured as a function of Csalt. The polymer solutions comprised of fixed polymer concentrations (Cpoly) for each electrolyte system. Consistent with Cpoly and the increasing values of Mw in the electrolyte system, Λ0 values tend to show a descending trend that indicates a better salt solubility in a binary system compared to a ternary system. In general, the K′ and κ values showed an increasing trend in the ternary electrolyte system as the polarity increases.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Idris, Ph.D. Thesis, Studies of Physical Properties of Novel Lithium Polymer Electrolytes, Faculty of Applied Sciences, De Montfort University, Leicester (2001).
- S.S. Sekhon, Bull. Mater. Sci., 26, 321 (2003); https://doi.org/10.1007/BF02707454
- P.A. Banka, J.C. Selser, B. Wang, D.K. Shenoy and R. Martin, Macromolecules, 29, 3956 (1996); https://doi.org/10.1021/ma9518159
- J. Chattopadhyay, T.S. Pathak and D.M.F. Santos, Polymers, 15, 3907 (2023); https://doi.org/10.3390/polym15193907
- G.G. Cameron, M.D. Ingram and J.L. Harvie, Faraday Discuss. Chem. Soc., 88, 55 (1989); https://doi.org/10.1039/dc9898800055
- I.F. Hakem, J. Lal and M.R. Bockstaller, J. Polym. Sci. B, Polym. Phys., 44, 3642 (2006); https://doi.org/10.1002/polb.21014
- A. D’Aprano, B. Sesta, N. Proietti and V. Mauro, J. Solution Chem., 26, 649 (1997); https://doi.org/10.1007/BF02767634
- G.G. Cameron, M.D. Ingram and G.A. Sorrie, J. Chem. Soc., Faraday Trans. 1, 83, 3345 (1987); https://doi.org/10.1039/F19878303345
- L.P. Teo, M.H. Buraidah and A.K. Arof, Molecules, 26, 6499 (2021); https://doi.org/10.3390/molecules26216499
- D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand and G. Wang, Chem, 5, 2326 (2019); https://doi.org/10.1016/j.chempr.2019.05.009
- J.M. Breen, H.S. Lee, X.Q. Yang and X. Sun, J. Power Sources, 89, 163 (2000); https://doi.org/10.1016/S0378-7753(00)00425-0
- A. Zaban, E. Zinigrad and D. Aurbach, J. Phys. Chem., 100, 3089 (1996); https://doi.org/10.1021/jp9514279
- D. Teeters and R. Frech, Solid State Ion., 18, 271 (1986); https://doi.org/10.1016/0167-2738(86)90125-6
- T.L. Nguyen, J.H. Kim and I.T. Kim, J. Nanosci. Nanotechnol., 19, 1001 (2019); https://doi.org/10.1166/jnn.2019.15956
- Y. Zhu, Z. Lao, M. Zhang, T. Hou, X. Xiao, Z. Piao, G. Lu, Z. Han, R. Gao, L. Nie, X. Wu, Y. Song, C. Ji, J. Wang and G. Zhou, Nat. Commun., 15, 3914 (2024); https://doi.org/10.1038/s41467-024-48078-7
- J.D.R. Mchem, Ph.D. Thesis, Ion-Ion Interactions of Lithium Salts in Polysiloxanes and Ionic Liquid, Department of Physical Chemistry for Natural Sciences, Universitat Regensburg, Regensburg, Germany (2004).
- K.J. Laidler, J.H. Meiser and B.C. Sanctuary, Solutions of Electrolytes, In: Physical Chemistry, New York Houghton: Mifflin Company, edn. 3, pp. 263-310 (2003).
- L. Coury, Curr. Sep., 18, 91 (1999).
- H. Hanibah, A. Ahmad and N.H. Hassan, Electrochim. Acta, 147, 758 (2014); https://doi.org/10.1016/j.electacta.2014.09.156
- A. Giambattista, B.M. Richardson and R.C. Richardson, Electric Current and Circuits, In: College Physics, New York: McGraw-Hill, pp. 626-659 (2004).
- Y.C. Wu and W.F. Koch, J. Solution Chem., 20, 391 (1991); https://doi.org/10.1023/A:1022653506593
- J.F. Cote, G. Perron and J.E. Desnoyers, J. Solution Chem., 27, 707 (1998); https://doi.org/10.1023/A:1022653506593
- M.A. Petrowsky, Ph.D. Thesis, Ion Transport in Liquid Electrolytes, Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma, USA (2008).
- J.D. Warner, Ph.D. Thesis, Transport Analysis in Polymer Liquids and Films, Department of Mary in Virgina, The college of William and Mary, Virgina, USA (2003).
- G.T. Hefter and M. Salomon, J. Solution Chem., 25, 541 (1996); https://doi.org/10.1007/BF00973084
- M. Salomon, J. Solution Chem., 22, 715 (1993); https://doi.org/10.2134/jeq1993.224715x
- A. Singh, Electric Conductance of Electrolytes, In: Advanced Experimental Physical Chemistry, New Delhi India: Campus Books International, edn. 1 pp. 510-541 (2008).
- H. Hanibah, A. Ahmad and N.H. Hassan, Asian J. Chem., 26, S127 (2014).
- H. Hanibah, N.H. Hassan and A. Ahmad, Asian J. Chem., 26, 4897 (2014); https://doi.org/10.14233/ajchem.2014.16635
References
R. Idris, Ph.D. Thesis, Studies of Physical Properties of Novel Lithium Polymer Electrolytes, Faculty of Applied Sciences, De Montfort University, Leicester (2001).
S.S. Sekhon, Bull. Mater. Sci., 26, 321 (2003); https://doi.org/10.1007/BF02707454
P.A. Banka, J.C. Selser, B. Wang, D.K. Shenoy and R. Martin, Macromolecules, 29, 3956 (1996); https://doi.org/10.1021/ma9518159
J. Chattopadhyay, T.S. Pathak and D.M.F. Santos, Polymers, 15, 3907 (2023); https://doi.org/10.3390/polym15193907
G.G. Cameron, M.D. Ingram and J.L. Harvie, Faraday Discuss. Chem. Soc., 88, 55 (1989); https://doi.org/10.1039/dc9898800055
I.F. Hakem, J. Lal and M.R. Bockstaller, J. Polym. Sci. B, Polym. Phys., 44, 3642 (2006); https://doi.org/10.1002/polb.21014
A. D’Aprano, B. Sesta, N. Proietti and V. Mauro, J. Solution Chem., 26, 649 (1997); https://doi.org/10.1007/BF02767634
G.G. Cameron, M.D. Ingram and G.A. Sorrie, J. Chem. Soc., Faraday Trans. 1, 83, 3345 (1987); https://doi.org/10.1039/F19878303345
L.P. Teo, M.H. Buraidah and A.K. Arof, Molecules, 26, 6499 (2021); https://doi.org/10.3390/molecules26216499
D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand and G. Wang, Chem, 5, 2326 (2019); https://doi.org/10.1016/j.chempr.2019.05.009
J.M. Breen, H.S. Lee, X.Q. Yang and X. Sun, J. Power Sources, 89, 163 (2000); https://doi.org/10.1016/S0378-7753(00)00425-0
A. Zaban, E. Zinigrad and D. Aurbach, J. Phys. Chem., 100, 3089 (1996); https://doi.org/10.1021/jp9514279
D. Teeters and R. Frech, Solid State Ion., 18, 271 (1986); https://doi.org/10.1016/0167-2738(86)90125-6
T.L. Nguyen, J.H. Kim and I.T. Kim, J. Nanosci. Nanotechnol., 19, 1001 (2019); https://doi.org/10.1166/jnn.2019.15956
Y. Zhu, Z. Lao, M. Zhang, T. Hou, X. Xiao, Z. Piao, G. Lu, Z. Han, R. Gao, L. Nie, X. Wu, Y. Song, C. Ji, J. Wang and G. Zhou, Nat. Commun., 15, 3914 (2024); https://doi.org/10.1038/s41467-024-48078-7
J.D.R. Mchem, Ph.D. Thesis, Ion-Ion Interactions of Lithium Salts in Polysiloxanes and Ionic Liquid, Department of Physical Chemistry for Natural Sciences, Universitat Regensburg, Regensburg, Germany (2004).
K.J. Laidler, J.H. Meiser and B.C. Sanctuary, Solutions of Electrolytes, In: Physical Chemistry, New York Houghton: Mifflin Company, edn. 3, pp. 263-310 (2003).
L. Coury, Curr. Sep., 18, 91 (1999).
H. Hanibah, A. Ahmad and N.H. Hassan, Electrochim. Acta, 147, 758 (2014); https://doi.org/10.1016/j.electacta.2014.09.156
A. Giambattista, B.M. Richardson and R.C. Richardson, Electric Current and Circuits, In: College Physics, New York: McGraw-Hill, pp. 626-659 (2004).
Y.C. Wu and W.F. Koch, J. Solution Chem., 20, 391 (1991); https://doi.org/10.1023/A:1022653506593
J.F. Cote, G. Perron and J.E. Desnoyers, J. Solution Chem., 27, 707 (1998); https://doi.org/10.1023/A:1022653506593
M.A. Petrowsky, Ph.D. Thesis, Ion Transport in Liquid Electrolytes, Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma, USA (2008).
J.D. Warner, Ph.D. Thesis, Transport Analysis in Polymer Liquids and Films, Department of Mary in Virgina, The college of William and Mary, Virgina, USA (2003).
G.T. Hefter and M. Salomon, J. Solution Chem., 25, 541 (1996); https://doi.org/10.1007/BF00973084
M. Salomon, J. Solution Chem., 22, 715 (1993); https://doi.org/10.2134/jeq1993.224715x
A. Singh, Electric Conductance of Electrolytes, In: Advanced Experimental Physical Chemistry, New Delhi India: Campus Books International, edn. 1 pp. 510-541 (2008).
H. Hanibah, A. Ahmad and N.H. Hassan, Asian J. Chem., 26, S127 (2014).
H. Hanibah, N.H. Hassan and A. Ahmad, Asian J. Chem., 26, 4897 (2014); https://doi.org/10.14233/ajchem.2014.16635