Copyright (c) 2025 Priyanka Naik Naik
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Copper Nanoferrite and Magnesium-Nickel-Silver Doped Copper Nanoferrites
Corresponding Author(s) : Shivraj G. Gounhalli
Asian Journal of Chemistry,
Vol. 37 No. 2 (2025): Vol 37 Issue 2, 2025
Abstract
The sol-gel approach was used to synthesize the copper nanoferrite and magnesium-nickel-silver doped copper nanoferrites in the present work. Several methods were used to characterize the synthesized nanoferrites, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy. FTIR spectroscopy revealed metal ion peaks at 547-569 cm–1. XRD evaluation indicated that the typical crystallite size was between 20 and 26 nm and the FESEM exhibited non-uniform forms in the synthesized nanoferrites. Elemental analysis revealed the presence of copper, magnesium, nickel and silver in the doped nanoferrites. UV-visible spectroscopy revealed that the direct optical band gap of 1.61 eV for pure copper nanoferrite, 1.53 eV for Cu0.5 and 1.36 eV for Cu0.7. The hysteresis loop of CuFe2O4 nanoparticles was studied to examine their magnetic properties. These findings implies that the synthesized nanoferrites have potential uses in semiconducting device applications and magnetic data storage.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.K. Surashe, V. Mahale, A.P. Keche, R.C. Alange, P.S. Aghav and R.G. Dorik, J. Phys.: Conf. Ser., 1644, 012025 (2020); https://doi.org/10.1088/1742-6596/1644/1/012025
- M. Selvakumar, S. Maruthamuthu, G.S. Thirunavukkarasu, A.T. Dhiwahar, M. Seyedmahmoudian, A. Stojcevski and V.R. Minnam Reddy, J. Nanopart. Res., 24, 205 (2022); https://doi.org/10.1007/s11051-022-05582-5
- T.F. Marinca, I. Chicinas and O. Isnard, Ceram. Int., 39, 4179 (2013); https://doi.org/10.1016/j.ceramint.2012.10.274
- P. Thakur, N. Gahlawat, P. Punia, S. Kharbanda, B. Ravelo and A. Thakur, J. Supercond. Nov. Magn., 35, 2639 (2022); https://doi.org/10.1007/s10948-022-06334-1
- B. Jeevanantham, Y. Song, H. Choe and M. Shobana, Mater. Lett. X, 12, 100105 (2021); https://doi.org/10.1016/j.mlblux.2021.100105
- T.R. Jeena, M. Geetha, P. Suchetan, N. Ronald and K. Amrutha, Inorg. Chem. Commun., 157, 111232 (2023); https://doi.org/10.1016/j.inoche.2023.111232
- K. Patil, S. Kadam, P. Lokhande, S. Balgude and P. More, Solid State Commun., 337, 114435 (2021); https://doi.org/10.1016/j.ssc.2021.114435
- A. Solunke, V.K. Barote, B.B. Sonawane, S.E. Shirsath, R. Kadam and V.S. Shinde, Mater. Today Proc., 92, 1225 (2023); https://doi.org/10.1016/j.matpr.2023.05.327
- V. Bhagwat, A.V. Humbe, S.D. More and K.M. Jadhav, Mater. Sci. Eng. B, 248, 114388 (2019); https://doi.org/10.1016/j.mseb.2019.114388
- M.N. Kiani, M.S. Butt, I.H. Gul, M. Saleem, M. Irfan, A.H. Baluch, M.A. Akram and M.A. Raza, ACS Omega, 8, 3755 (2023); https://doi.org/10.1021/acsomega.2c05226
- M.Y. Wani, A.A. Pandit, J. Begum, N. Ahmed, M.S. Mir and D.M. Makhdoomi, Lett. Anim. Biol., 2, 32 (2022); https://doi.org/10.62310/liab.v2i1.77
- D. Mallesh, P. Naresh, G. Thalari and A. Seema, ECS J. Solid State Sci. Technol., 13, 043004 (2024); https://doi.org/10.1149/2162-8777/ad3982
- S.K. Pradhan, S. Bid, M. Gateshki and V. Petkov, Mater. Chem. Phys., 93, 224 (2005); https://doi.org/10.1016/j.matchemphys.2005.03.017
- P. Mitra, N. Jahangeer and B.H. Venkataraman, ECS J. Solid State Sci. Technol., 13, 033002 (2024); https://doi.org/10.1149/2162-8777/ad2e1b
- M. Tanveer, I. Nisa, G. Nabi, M. Khalid Hussain, S. Khalid and M.A. Qadeer, J. Magn. Magn. Mater., 553, 169245 (2022); https://doi.org/10.1016/j.jmmm.2022.169245
- M. Raghasudha, D. Ravinder and P. Veerasomaiah, J. Magn. Magn. Mater., 355, 210 (2014); https://doi.org/10.1016/j.jmmm.2013.12.020
- M. Raghasudha, D. Ravinder and P. Veerasomaiah, J. Chem., 2013, 804042 (2013); https://doi.org/10.1155/2013/804042
- D. Ravi Kumar, C.A. Lincoln, G. Vijaya Charan, G. Thara, D. Ravinder, M. Veeraswamy and P. Naresh, Mater. Chem. Phys., 278, 125648 (2022); https://doi.org/10.1016/j.matchemphys.2021.125648
- M.A. Dar, V. Verma, S.P. Gairola, W.A. Siddiqui, R.K. Singh and R.K. Kotnala, Appl. Surf. Sci., 258, 5342 (2012); https://doi.org/10.1016/j.apsusc.2012.01.158
- D.R. Kumar, S.I. Ahmad, Ch.A. Lincoln and D. Ravinder, Journal of Asian Ceramic Societies, 7, 53 (2019); https://doi.org/10.1080/21870764.2018.1563036
- S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, S.D. More and K.M. Jadhav, Ceram. Int., 46, 13170 (2020); https://doi.org/10.1016/j.ceramint.2020.02.091
- D. Furman, J. Campisi, E. Verdin, P. Carrera-Bastos, C. Franceschi, S. Targ, L. Ferrucci, D.W. Gilroy, A. Fasano, G.W. Miller, A.H. Miller, A. Mantovani, C.M. Weyand, N. Barzilai, J.J. Goronzy, T.A. Rando, R.B. Effros, A. Lucia, N. Kleinstreuer and G.M. Slavich, Nat. Med., 25, 1822 (2019); https://doi.org/10.1038/s41591-019-0675-0
- S. Russo, Tech. Reg. Anesth. Pain Manage., 12, 105 (2008); https://doi.org/10.1053/j.trap.2008.01.001
- R. Srivastava and B.C. Yadav, Int. J. Green Nanotechnol., 4, 141 (2012); https://doi.org/10.1080/19430892.2012.676918
- S. Malvia, S.A. Bagadi, U.S. Dubey and S. Saxena, Asia Pac. J. Clin. Oncol., 13, 289 (2017); https://doi.org/10.1111/ajco.12661
- A. Pourjavadi, S.S. Amin and S.H. Hosseini, Ind. Eng. Chem. Res., 57, 822 (2018); https://doi.org/10.1021/acs.iecr.7b04050
- A. Kannolli, A. P, S.R. Manohara, M. Taj and M.G. Kotresh, J. Magn. Magn. Mater., 584, 171079 (2023); https://doi.org/10.1016/j.jmmm.2023.171079
- A. Kannolli, A. P, A.K. Shettar, J.H. Hoskeri and M.G. Kotresh, Chem. Phys. Impact, 7, 100396 (2023); https://doi.org/10.1016/j.chphi.2023.100396
References
V.K. Surashe, V. Mahale, A.P. Keche, R.C. Alange, P.S. Aghav and R.G. Dorik, J. Phys.: Conf. Ser., 1644, 012025 (2020); https://doi.org/10.1088/1742-6596/1644/1/012025
M. Selvakumar, S. Maruthamuthu, G.S. Thirunavukkarasu, A.T. Dhiwahar, M. Seyedmahmoudian, A. Stojcevski and V.R. Minnam Reddy, J. Nanopart. Res., 24, 205 (2022); https://doi.org/10.1007/s11051-022-05582-5
T.F. Marinca, I. Chicinas and O. Isnard, Ceram. Int., 39, 4179 (2013); https://doi.org/10.1016/j.ceramint.2012.10.274
P. Thakur, N. Gahlawat, P. Punia, S. Kharbanda, B. Ravelo and A. Thakur, J. Supercond. Nov. Magn., 35, 2639 (2022); https://doi.org/10.1007/s10948-022-06334-1
B. Jeevanantham, Y. Song, H. Choe and M. Shobana, Mater. Lett. X, 12, 100105 (2021); https://doi.org/10.1016/j.mlblux.2021.100105
T.R. Jeena, M. Geetha, P. Suchetan, N. Ronald and K. Amrutha, Inorg. Chem. Commun., 157, 111232 (2023); https://doi.org/10.1016/j.inoche.2023.111232
K. Patil, S. Kadam, P. Lokhande, S. Balgude and P. More, Solid State Commun., 337, 114435 (2021); https://doi.org/10.1016/j.ssc.2021.114435
A. Solunke, V.K. Barote, B.B. Sonawane, S.E. Shirsath, R. Kadam and V.S. Shinde, Mater. Today Proc., 92, 1225 (2023); https://doi.org/10.1016/j.matpr.2023.05.327
V. Bhagwat, A.V. Humbe, S.D. More and K.M. Jadhav, Mater. Sci. Eng. B, 248, 114388 (2019); https://doi.org/10.1016/j.mseb.2019.114388
M.N. Kiani, M.S. Butt, I.H. Gul, M. Saleem, M. Irfan, A.H. Baluch, M.A. Akram and M.A. Raza, ACS Omega, 8, 3755 (2023); https://doi.org/10.1021/acsomega.2c05226
M.Y. Wani, A.A. Pandit, J. Begum, N. Ahmed, M.S. Mir and D.M. Makhdoomi, Lett. Anim. Biol., 2, 32 (2022); https://doi.org/10.62310/liab.v2i1.77
D. Mallesh, P. Naresh, G. Thalari and A. Seema, ECS J. Solid State Sci. Technol., 13, 043004 (2024); https://doi.org/10.1149/2162-8777/ad3982
S.K. Pradhan, S. Bid, M. Gateshki and V. Petkov, Mater. Chem. Phys., 93, 224 (2005); https://doi.org/10.1016/j.matchemphys.2005.03.017
P. Mitra, N. Jahangeer and B.H. Venkataraman, ECS J. Solid State Sci. Technol., 13, 033002 (2024); https://doi.org/10.1149/2162-8777/ad2e1b
M. Tanveer, I. Nisa, G. Nabi, M. Khalid Hussain, S. Khalid and M.A. Qadeer, J. Magn. Magn. Mater., 553, 169245 (2022); https://doi.org/10.1016/j.jmmm.2022.169245
M. Raghasudha, D. Ravinder and P. Veerasomaiah, J. Magn. Magn. Mater., 355, 210 (2014); https://doi.org/10.1016/j.jmmm.2013.12.020
M. Raghasudha, D. Ravinder and P. Veerasomaiah, J. Chem., 2013, 804042 (2013); https://doi.org/10.1155/2013/804042
D. Ravi Kumar, C.A. Lincoln, G. Vijaya Charan, G. Thara, D. Ravinder, M. Veeraswamy and P. Naresh, Mater. Chem. Phys., 278, 125648 (2022); https://doi.org/10.1016/j.matchemphys.2021.125648
M.A. Dar, V. Verma, S.P. Gairola, W.A. Siddiqui, R.K. Singh and R.K. Kotnala, Appl. Surf. Sci., 258, 5342 (2012); https://doi.org/10.1016/j.apsusc.2012.01.158
D.R. Kumar, S.I. Ahmad, Ch.A. Lincoln and D. Ravinder, Journal of Asian Ceramic Societies, 7, 53 (2019); https://doi.org/10.1080/21870764.2018.1563036
S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, S.D. More and K.M. Jadhav, Ceram. Int., 46, 13170 (2020); https://doi.org/10.1016/j.ceramint.2020.02.091
D. Furman, J. Campisi, E. Verdin, P. Carrera-Bastos, C. Franceschi, S. Targ, L. Ferrucci, D.W. Gilroy, A. Fasano, G.W. Miller, A.H. Miller, A. Mantovani, C.M. Weyand, N. Barzilai, J.J. Goronzy, T.A. Rando, R.B. Effros, A. Lucia, N. Kleinstreuer and G.M. Slavich, Nat. Med., 25, 1822 (2019); https://doi.org/10.1038/s41591-019-0675-0
S. Russo, Tech. Reg. Anesth. Pain Manage., 12, 105 (2008); https://doi.org/10.1053/j.trap.2008.01.001
R. Srivastava and B.C. Yadav, Int. J. Green Nanotechnol., 4, 141 (2012); https://doi.org/10.1080/19430892.2012.676918
S. Malvia, S.A. Bagadi, U.S. Dubey and S. Saxena, Asia Pac. J. Clin. Oncol., 13, 289 (2017); https://doi.org/10.1111/ajco.12661
A. Pourjavadi, S.S. Amin and S.H. Hosseini, Ind. Eng. Chem. Res., 57, 822 (2018); https://doi.org/10.1021/acs.iecr.7b04050
A. Kannolli, A. P, S.R. Manohara, M. Taj and M.G. Kotresh, J. Magn. Magn. Mater., 584, 171079 (2023); https://doi.org/10.1016/j.jmmm.2023.171079
A. Kannolli, A. P, A.K. Shettar, J.H. Hoskeri and M.G. Kotresh, Chem. Phys. Impact, 7, 100396 (2023); https://doi.org/10.1016/j.chphi.2023.100396