Copyright (c) 2025 Kurva Rammohan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Magnetic Properties of SmFexO3 and LaFexO3 Perovskites with Iron Excess and Deficiency (x = 1.05, 0.95)
Corresponding Author(s) : G. Vijaya Lakshmi
Asian Journal of Chemistry,
Vol. 37 No. 2 (2025): Vol 37 Issue 2, 2025
Abstract
SmFeO3 (SFO) and LaFeO3 (LFO) perovskites with excess and deficient iron (SmFe1.05O3, SmFe0.95O3 and LaFe1.05O3, LaFe0.95O3) were synthesized using the sol-gel method, achieving a quantitative yield of 98%. The materials were thoroughly characterized using powder X-ray diffraction (p-XRD), field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDS), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM) analysis. The p-XRD confirmed the successful synthesis of the iron-modified SFO and LFO perovskites with an orthorhombic structure, crystallizing in the Pnma space group and the La3+ forms an eight-coordinate geometry with O2– atoms in the perovskite lattice. The orthorhombic structure and phase purity, irregular morphology conformed by p-XRD and FESEM analysis. The elemental composition and the surface architecture and chemical valence state of key elements of above perovskites by EDS and XPS analysis. The band gap energies of SmFe1.05O3 (1.96 eV) SmFe0.95O3 (2.04 eV) and LaFe1.05O3 (2.00 eV) LaFe0.95O3 (2.11 eV) were determined using UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). VSM analysis revealed that iron-deficient LaFexO3 (LaFe0.95O3) exhibited paramagnetic behaviour with higher saturation magnetization, while iron-excess SmFexO3 (SmFe1.05O3) also displayed paramagnetic behaviour.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Li, Z.-M. Wang, F. Deschler, S. Gao, R.H. Friend and A.K. Cheetham, Nat. Rev. Mater., 2, 16099 (2017); https://doi.org/10.1038/natrevmats.2016.99
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu and S.I. Seok, Nat. Mater., 13, 897 (2014); https://doi.org/10.1038/nmat4014
- J.A. Dias, M.A.S. Andrade Jr., H.L.S. Santos, M.R. Morelli and L.H. Mascaro, ChemElectroChem, 7, 3173 (2020); https://doi.org/10.1002/celc.202000451
- S. Heo, G. Seo, Y. Lee, D. Lee, M. Seol, J. Lee, J.B. Park, K. Kim, D.J. Yun, Y.S. Kim, J.K. Shin, T.K. Ahn and M.K. Nazeeruddin, Energy Environ. Sci., 10, 1128 (2017); https://doi.org/10.1039/C7EE00303J
- M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt and M. Grätzel, Science, 354, 206 (2016); https://doi.org/10.1126/science.aah5557
- E.A. Alharbi, A.Y. Alyamani, D.J. Kubicki, A.R. Uhl, B.J. Walder, A.Q. Alanazi, J. Luo, A. Burgos-Caminal, A. Albadri, H. Albrithen, M.H. Alotaibi, J.E. Moser, S.M. Zakeeruddin, F. Giordano, L. Emsley and M. Gratzel, Nat. Commun., 10, 3008 (2019); https://doi.org/10.1038/s41467-019-10985-5
- N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi and N.-G. Park, J. Am. Chem. Soc., 137, 8696 (2015); https://doi.org/10.1021/jacs.5b04930
- L. Zhang, L. Mei, K. Wang, Y. Lv, S. Zhang, Y. Lian, X. Liu, Z. Ma, G. Xiao, Q. Liu, S. Zhai, S.i Zhang, G. Liu, L. Yuan, B. Guo, Z. Chen, K. Wei, A. Liu, S. Yue, G. Niu, X. Pan, J. Sun, Y. Hua, W.-Q. Wu, D. Di, B. Zhao, J. Tian, Z. Wang, Y. Yang, L. Chu, M. Yuan, H. Zeng, H.-L. Yip, K. Yan, W. Xu, L. Zhu, W. Zhang, G. Xing, F. Gao and L. Ding, Nano-Micro Lett., 15, 177 (2023); https://doi.org/10.1007/s40820-023-01140-3
- P. Huang, Q. Chen, K. Zhang, L. Yuan, Y. Zhou, B. Song and Y. Li, J. Mater. Chem. A Mater. Energy Sustain., 7, 6213 (2019); https://doi.org/10.1039/C8TA11841H
- B.W. Park, B. Philippe, S.M. Jain, X. Zhang, T. Edvinsson, H. Rensmo, B. Zietz and G.J. Boschloo, J. Mater. Chem. A Mater. Energy Sustain., 3, 21760 (2015); https://doi.org/10.1039/C5TA05470B
- X. Liu, Y. Wang, F. Xie, X. Yang and L. Han, ACS Energy Lett., 3, 1116 (2018); https://doi.org/10.1021/acsenergylett.8b00383
- A. Guerrero, J. You, C. Aranda, Y.S. Kang, G. Garcia-Belmonte, H. Zhou, J. Bisquert and Y. Yang, ACS Nano, 10, 218 (2016); https://doi.org/10.1021/acsnano.5b03687
- D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent and O.M. Bakr, Science, 347, 519 (2015); https://doi.org/10.1126/science.aaa2725
- N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M.S. Islam and S.A. Haque, Nat. Commun., 8, 15218 (2017); https://doi.org/10.1038/ncomms15218
- J. Zhao, Y. Deng, H. Wei, X. Zheng, Z. Yu, Y. Shao, J.E. Shield and Huang, Sci. Adv., 3, eaao5616 (2017); https://doi.org/10.1126/sciadv.aao5616
- J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal and S.I. Seok, Nano Lett., 13, 1764 (2013); https://doi.org/10.1021/nl400349b
- W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim and J.H. Noh, Science, 356, 1376 (2017); https://doi.org/10.1126/science.aan2301
- R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit, H.G. Boyen, M.F. Toney and M.D. McGehee, J. Am. Chem. Soc., 139, 11117 (2017); https://doi.org/10.1021/jacs.7b04981
- G.A.H. Mekhemer, H.A.A. Mohamed, A. Bumajdad and M.I. Zaki, Sci. Rep., 13, 7453 (2023); https://doi.org/10.1038/s41598-023-34065-3
- S.B. Hammouda, F. Zhao, Z. Safaei, D.L. Ramasamy, B. Doshi and M. Sillanpää, Appl. Catal. B, 233, 99 (2018); https://doi.org/10.1016/j.apcatb.2018.03.088
- G. Balraj, K. Rammohan, A. Anilkumar and D. Ayodhya, Res. J. Chem. Environ., 5, 36 (2023).
- H. Chang, E. Bjørgum, O. Mihai, J. Yang, H.L. Lein, T. Grande, S. Raaen, Y.-A. Zhu, A. Holmen and D. Chen, ACS Catal., 10, 3707 (2020); https://doi.org/10.1021/acscatal.9b05154
- R. Zhang, N. Dubouis, M. Ben Osman, W. Yin, M.T. Sougrati, D.A.D. Corte, D. Giaume and A. Grimaud, Angew. Chem., 131, 4619 (2019); https://doi.org/10.1002/ange.201814075
- J. Kojcinovic, M. Sahu, S. Hajra, D. Tatar, T. Klaser, Z. Skoko, Z. Jaglicic, E. Sadrollahi, F.J. Litterst, H.J. Kim and I. Djerdj, Mater. Chem. Front., 6, 1116 (2022); https://doi.org/10.1039/D1QM01565F
- E.K. Abdel-Khalek, M.A. Motawea, M.A. Aboelnasr and H.H. El-Bahnasawy, Physica B, 624, 413415 (2022); https://doi.org/10.1016/j.physb.2021.413415
- J. Dai, Y. Zhu, Y. Zhong, J. Miao, B. Lin, W. Zhou and Z. Shao, Adv. Mater. Interfaces, 6, 1801317 (2019); https://doi.org/10.1002/admi.201801317
- B. Han, A. Grimaud, L. Giordano, W.T. Hong, O. Diaz-Morales, L. Yueh-Lin, J. Hwang, N. Charles, K.A. Stoerzinger, W. Yang, M.T.M. Koper and Y. Shao-Horn, J. Phys. Chem. C, 122, 8445 (2018); https://doi.org/10.1021/acs.jpcc.8b01397
- B.-J. Kim, E. Fabbri, D.F. Abbott, X. Cheng, A.H. Clark, M. Nachtegaal, M. Borlaf, I.E. Castelli, T. Graule and T.J. Schmidt, J. Am. Chem. Soc., 141, 5231 (2019); https://doi.org/10.1021/jacs.8b12101
- A. Nenning, A.K. Opitz, C. Rameshan, R. Rameshan, R. Blume, M. Hävecker, A. Knop-Gericke, G. Rupprechter, B. Klötzer and J. Fleig, J. Phys. Chem. C, 120, 1461 (2016); https://doi.org/10.1021/acs.jpcc.5b08596
- S. Chandel, P. Thakur, S.S. Thakur, A. Sharma, J.-H. Hsu, M. Tomar, V. Gupta and A. Thakur, Mater. Chem. Phys., 204, 207 (2018); https://doi.org/10.1016/j.matchemphys.2017.10.042
References
W. Li, Z.-M. Wang, F. Deschler, S. Gao, R.H. Friend and A.K. Cheetham, Nat. Rev. Mater., 2, 16099 (2017); https://doi.org/10.1038/natrevmats.2016.99
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu and S.I. Seok, Nat. Mater., 13, 897 (2014); https://doi.org/10.1038/nmat4014
J.A. Dias, M.A.S. Andrade Jr., H.L.S. Santos, M.R. Morelli and L.H. Mascaro, ChemElectroChem, 7, 3173 (2020); https://doi.org/10.1002/celc.202000451
S. Heo, G. Seo, Y. Lee, D. Lee, M. Seol, J. Lee, J.B. Park, K. Kim, D.J. Yun, Y.S. Kim, J.K. Shin, T.K. Ahn and M.K. Nazeeruddin, Energy Environ. Sci., 10, 1128 (2017); https://doi.org/10.1039/C7EE00303J
M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt and M. Grätzel, Science, 354, 206 (2016); https://doi.org/10.1126/science.aah5557
E.A. Alharbi, A.Y. Alyamani, D.J. Kubicki, A.R. Uhl, B.J. Walder, A.Q. Alanazi, J. Luo, A. Burgos-Caminal, A. Albadri, H. Albrithen, M.H. Alotaibi, J.E. Moser, S.M. Zakeeruddin, F. Giordano, L. Emsley and M. Gratzel, Nat. Commun., 10, 3008 (2019); https://doi.org/10.1038/s41467-019-10985-5
N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi and N.-G. Park, J. Am. Chem. Soc., 137, 8696 (2015); https://doi.org/10.1021/jacs.5b04930
L. Zhang, L. Mei, K. Wang, Y. Lv, S. Zhang, Y. Lian, X. Liu, Z. Ma, G. Xiao, Q. Liu, S. Zhai, S.i Zhang, G. Liu, L. Yuan, B. Guo, Z. Chen, K. Wei, A. Liu, S. Yue, G. Niu, X. Pan, J. Sun, Y. Hua, W.-Q. Wu, D. Di, B. Zhao, J. Tian, Z. Wang, Y. Yang, L. Chu, M. Yuan, H. Zeng, H.-L. Yip, K. Yan, W. Xu, L. Zhu, W. Zhang, G. Xing, F. Gao and L. Ding, Nano-Micro Lett., 15, 177 (2023); https://doi.org/10.1007/s40820-023-01140-3
P. Huang, Q. Chen, K. Zhang, L. Yuan, Y. Zhou, B. Song and Y. Li, J. Mater. Chem. A Mater. Energy Sustain., 7, 6213 (2019); https://doi.org/10.1039/C8TA11841H
B.W. Park, B. Philippe, S.M. Jain, X. Zhang, T. Edvinsson, H. Rensmo, B. Zietz and G.J. Boschloo, J. Mater. Chem. A Mater. Energy Sustain., 3, 21760 (2015); https://doi.org/10.1039/C5TA05470B
X. Liu, Y. Wang, F. Xie, X. Yang and L. Han, ACS Energy Lett., 3, 1116 (2018); https://doi.org/10.1021/acsenergylett.8b00383
A. Guerrero, J. You, C. Aranda, Y.S. Kang, G. Garcia-Belmonte, H. Zhou, J. Bisquert and Y. Yang, ACS Nano, 10, 218 (2016); https://doi.org/10.1021/acsnano.5b03687
D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent and O.M. Bakr, Science, 347, 519 (2015); https://doi.org/10.1126/science.aaa2725
N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M.S. Islam and S.A. Haque, Nat. Commun., 8, 15218 (2017); https://doi.org/10.1038/ncomms15218
J. Zhao, Y. Deng, H. Wei, X. Zheng, Z. Yu, Y. Shao, J.E. Shield and Huang, Sci. Adv., 3, eaao5616 (2017); https://doi.org/10.1126/sciadv.aao5616
J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal and S.I. Seok, Nano Lett., 13, 1764 (2013); https://doi.org/10.1021/nl400349b
W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim and J.H. Noh, Science, 356, 1376 (2017); https://doi.org/10.1126/science.aan2301
R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit, H.G. Boyen, M.F. Toney and M.D. McGehee, J. Am. Chem. Soc., 139, 11117 (2017); https://doi.org/10.1021/jacs.7b04981
G.A.H. Mekhemer, H.A.A. Mohamed, A. Bumajdad and M.I. Zaki, Sci. Rep., 13, 7453 (2023); https://doi.org/10.1038/s41598-023-34065-3
S.B. Hammouda, F. Zhao, Z. Safaei, D.L. Ramasamy, B. Doshi and M. Sillanpää, Appl. Catal. B, 233, 99 (2018); https://doi.org/10.1016/j.apcatb.2018.03.088
G. Balraj, K. Rammohan, A. Anilkumar and D. Ayodhya, Res. J. Chem. Environ., 5, 36 (2023).
H. Chang, E. Bjørgum, O. Mihai, J. Yang, H.L. Lein, T. Grande, S. Raaen, Y.-A. Zhu, A. Holmen and D. Chen, ACS Catal., 10, 3707 (2020); https://doi.org/10.1021/acscatal.9b05154
R. Zhang, N. Dubouis, M. Ben Osman, W. Yin, M.T. Sougrati, D.A.D. Corte, D. Giaume and A. Grimaud, Angew. Chem., 131, 4619 (2019); https://doi.org/10.1002/ange.201814075
J. Kojcinovic, M. Sahu, S. Hajra, D. Tatar, T. Klaser, Z. Skoko, Z. Jaglicic, E. Sadrollahi, F.J. Litterst, H.J. Kim and I. Djerdj, Mater. Chem. Front., 6, 1116 (2022); https://doi.org/10.1039/D1QM01565F
E.K. Abdel-Khalek, M.A. Motawea, M.A. Aboelnasr and H.H. El-Bahnasawy, Physica B, 624, 413415 (2022); https://doi.org/10.1016/j.physb.2021.413415
J. Dai, Y. Zhu, Y. Zhong, J. Miao, B. Lin, W. Zhou and Z. Shao, Adv. Mater. Interfaces, 6, 1801317 (2019); https://doi.org/10.1002/admi.201801317
B. Han, A. Grimaud, L. Giordano, W.T. Hong, O. Diaz-Morales, L. Yueh-Lin, J. Hwang, N. Charles, K.A. Stoerzinger, W. Yang, M.T.M. Koper and Y. Shao-Horn, J. Phys. Chem. C, 122, 8445 (2018); https://doi.org/10.1021/acs.jpcc.8b01397
B.-J. Kim, E. Fabbri, D.F. Abbott, X. Cheng, A.H. Clark, M. Nachtegaal, M. Borlaf, I.E. Castelli, T. Graule and T.J. Schmidt, J. Am. Chem. Soc., 141, 5231 (2019); https://doi.org/10.1021/jacs.8b12101
A. Nenning, A.K. Opitz, C. Rameshan, R. Rameshan, R. Blume, M. Hävecker, A. Knop-Gericke, G. Rupprechter, B. Klötzer and J. Fleig, J. Phys. Chem. C, 120, 1461 (2016); https://doi.org/10.1021/acs.jpcc.5b08596
S. Chandel, P. Thakur, S.S. Thakur, A. Sharma, J.-H. Hsu, M. Tomar, V. Gupta and A. Thakur, Mater. Chem. Phys., 204, 207 (2018); https://doi.org/10.1016/j.matchemphys.2017.10.042