Copyright (c) 2025 Kavitha R Thirumoorthi, Swapna M. Gali, Jagadeswaran S., Jayaprakash G.K. , Kiran Kumar Tadi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Development of Reduced Graphene Oxide Ionic Liquid Nanocomposite for the Electrochemical Sensing of Uric Acid
Corresponding Author(s) : Kiran Kumar Tadi
Asian Journal of Chemistry,
Vol. 37 No. 5 (2025): Vol 37 Issue 5, 2025
Abstract
Graphene-based biosensors are garnering significant scholarly interest attributable to the engineering potential of graphene, which enhances both specificity and sensitivity. However, pristine graphene doesn’t account for any specific interactions. The research investigates the utilization of reduced graphene oxide (rGO) in conjunction with hexylmethyl imidazolium tetrafluoroborate ([HMIM]/[BF4]) ionic liquid (IL) modified glassy carbon electrodes (GCE) for the electrochemical detection of uric acid. Graphene oxide (GO) was synthesized using the improved Hummer’s method. Raman spectra was recorded to confirm the exfoliation of graphite to GO and reduction of GO. Cyclic voltammetry and electrochemical impedance spectroscopy were used to study the electron transfer kinetics of the modified electrode. The linearity range of the fabricated sensor was recorded using differential pulse voltammetry (DPV) and observed linearity from 19.6 × 10–6 M to 1.6 × 10–2 M of uric acid concentration with a detection limit of 5.1 × 10–6 M using differential pulse voltammetry (DPV).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Maiuolo, F. Oppedisano, S. Gratteri, C. Muscoli and V. Mollace, Int. J. Cardiol., 213, 8 (2016); https://doi.org/10.1016/j.ijcard.2015.08.109
- D. Swinson, J. Snaith, J. Buckberry and M. Brickley, Int. J. Osteoarchaeol., 20, 135 (2010); https://doi.org/10.1002/oa.1009
- N. Duplancic, D. Kukoc-Modun, L. Modun and D. Radic, Molecules, 16, 7058 (2011); https://doi.org/10.3390/molecules16087058
- F.R.P. Rocha and D.L. Rocha, Microchem. J., 94, 53 (2010); https://doi.org/10.1016/j.microc.2009.08.010
- M.L. Jin, D. Seo, M.H. Huy, B.T. Pham, Q.T. Conte, Y.-I. Thangadurai and D. Lee, Biosens. Bioelectron., 77, 359 (2016); https://doi.org/10.1016/j.bios.2015.09.057
- Z. Zhang, Y. Jin, X. Li, J. Zhao, X. Guo, J. Wang, Z. Guo, X. Zhang, Y. Tao, Y. Liu, D. Chen and X. Liang, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 1026, 67 (2016); https://doi.org/10.1016/j.jchromb.2015.11.015
- M.B. Blauch and F.C. Koch, J. Biol. Chem., 130, 443 (1939); https://doi.org/10.1016/S0021-9258(18)73516-3
- G. Li, C. Xu, H. Xu, L. Gan, K. Sun and B. Yuan, Analyst, 148, 2553 (2023); https://doi.org/10.1039/D3AN00291H
- Geethukrishnan, O. Apte and K.K. Tadi, Tungsten, 7, 137 (2024); https://doi.org/10.1007/s42864-024-00297-7
- C. Wang, P. Xu and K. Zhuo, Anal. Sci., 26, 191 (2014); https://doi.org/10.1002/elan.201300345
- M. Pumera, Chem. Rec., 9, 211 (2009); https://doi.org/10.1002/tcr.200900008
- D. Li, J. Liu, C.J. Barrow and W. Yang, Chem. Commun., 50, 8197 (2014); https://doi.org/10.1039/c4cc03384a
- S. Xu, T. Wang, G. Liu, Z. Cao, L.A. Frank, S. Jiang, C. Zhang, Z. Li, V.V. Krasitskaya, Q. Li, Y. Sha, X. Zhang, H. Liu and J. Wang, Sens. Actuators B Chem., 326, 128991 (2021); https://doi.org/10.1016/j.snb.2020.128991
- A.R. Jalalvand and M.M. Karami, Sens. Bio-Sens. Res., 47, 100733 (2025); https://doi.org/10.1016/j.sbsr.2024.100733
- N. Mushahary, A. Sarkar, F. Basumatary, S. Brahma, B. Das and S. Basumatary, Result Surfaces Interfaces, 15, 10025 (2024); https://doi.org/10.1016/j.rsurfi.2024.100225
- S.S. Sekhon, P. Kaur, Y.H. Kim and S.S. Sekhon, npj 2D Mater. Appl., 5, 21 (2021); https://doi.org/10.1038/s41699-021-00202-7
- J. Liu, C. Shuping, L. Yanan and Z. Bijing, J. Saudi Chem. Soc., 26, 101560 (2022); https://doi.org/10.1016/j.jscs.2022.101560
- P.L. Yap, S. Kabiri, Y.L. Auyoong, D.N.H. Tran and D. Losic, ACS Omega, 4, 19505 (2019); https://doi.org/10.1021/acsomega.9b02642
- P. Klemp, S.A. Stansfield, B. Castle and M.C. Robertson, Ann. Rheum. Dis., 56, 22 (1997); https://doi.org/10.1136/ard.56.1.22
- D. Isin, E. Eksin and A. Erdem, Biosensors, 12, 95 (2022); https://doi.org/10.3390/bios12020095
- K. Chen, B. Xu, L. Shen, D. Shen, M. Li and L.-H. Guo, RSC Adv., 12, 19452 (2022); https://doi.org/10.1039/D2RA02547G
- P. Kumar, I. Soni, G.K. Jayaprakash, S. Kumar, S. Rao, R. Flores-Moreno and A.S. Sowmyashree, Inorg. Chem. Commun., 146, 110110 (2022); https://doi.org/10.1016/j.inoche.2022.110110
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, A. Slesarev, Z. Sun, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368
- N. Murugesan, M. Kandasamy, S. Murugesan, N. Pugazhenthiran, S. Suresh, V.P. Venkatesh, B.K. Balachandar, S.K. Kumar and M.N.M. Ansari, Physica B, 669, 415288 (2023); https://doi.org/10.1016/j.physb.2023.415288
- A.C. Ferrari and D.M. Basko, Nat. Nanotechnol., 8, 235 (2013); https://doi.org/10.1038/nnano.2013.46
- S.I. Khan, K.K. Tadi, R.R. Chillawar and R.V. Motghare, J. Electrochem. Soc., 165, B804 (2018); https://doi.org/10.1149/2.0121816jes
- J.G. Gu, S.P. Cheng, J. Liu and J.D. Gu, J. Polym. Environ., 8, 167 (2000); https://doi.org/10.1023/A:1015293626335
- A.J. Bard and L.R. Faulkner, Electrochemical Sensors: Fundamental and Applications, John Wiley & Sons, Inc. edn. 2 (2001).
- Y. Abbas, S. Ali, M. Basharat, W. Zou, F. Yang, W. Liu, S. Zhang, Z. Wu, N. Akhtar and D. Wu, ACS Appl. Nano Mater., 3, 11383 (2020); https://doi.org/10.1021/acsanm.0c02466
- A. Ajith, N.S.K. Gowthaman, D. Pandiarajan, C. Sugumar and S.A. John, Microchem. J., 199, 110020 (2024); https://doi.org/10.1016/j.microc.2024.110020
- E. Iyyappan, S.J. Samuel Justin, P. Wilson and A. Palaniappan, ACS Appl. Nano Mater., 3, 7761 (2020); https://doi.org/10.1021/acsanm.0c01322
- H. Zhang and S. Liu, J. Alloys Compd., 842, 155873 (2020); https://doi.org/10.1016/j.jallcom.2020.155873
- F. Mazzara, B. Patella, G. Aiello, A. O’Riordan, C. Torino, A. Vilasi and R. Inguanta, Electrochim. Acta, 388, 138652 (2021); https://doi.org/10.1016/j.electacta.2021.138652
- X. Xie, D.P. Wang, C. Guo, Y. Liu, Q. Rao, F. Lou, Q. Li, Y. Dong, Q. Li, H.B. Yang and F.X. Hu, Anal. Chem., 93, 4916 (2021); https://doi.org/10.1021/acs.analchem.0c05191
- S. Masrat, V. Nagal, M. Khan, A. Ahmad, M.B. Alshammari, S. Alam, U.T. Nakate, B. Lee, P. Mishra, K.S. Bhat and R. Ahmad, ACS Appl. Nano Mater., 6, 16615 (2023); https://doi.org/10.1021/acsanm.3c02794
- S. Pramanik, P. Karmakar and D.K. Das, Biointerface Res. Appl. Chem., 13, 134 (2022); https://doi.org/10.33263/BRIAC132.134
References
J. Maiuolo, F. Oppedisano, S. Gratteri, C. Muscoli and V. Mollace, Int. J. Cardiol., 213, 8 (2016); https://doi.org/10.1016/j.ijcard.2015.08.109
D. Swinson, J. Snaith, J. Buckberry and M. Brickley, Int. J. Osteoarchaeol., 20, 135 (2010); https://doi.org/10.1002/oa.1009
N. Duplancic, D. Kukoc-Modun, L. Modun and D. Radic, Molecules, 16, 7058 (2011); https://doi.org/10.3390/molecules16087058
F.R.P. Rocha and D.L. Rocha, Microchem. J., 94, 53 (2010); https://doi.org/10.1016/j.microc.2009.08.010
M.L. Jin, D. Seo, M.H. Huy, B.T. Pham, Q.T. Conte, Y.-I. Thangadurai and D. Lee, Biosens. Bioelectron., 77, 359 (2016); https://doi.org/10.1016/j.bios.2015.09.057
Z. Zhang, Y. Jin, X. Li, J. Zhao, X. Guo, J. Wang, Z. Guo, X. Zhang, Y. Tao, Y. Liu, D. Chen and X. Liang, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 1026, 67 (2016); https://doi.org/10.1016/j.jchromb.2015.11.015
M.B. Blauch and F.C. Koch, J. Biol. Chem., 130, 443 (1939); https://doi.org/10.1016/S0021-9258(18)73516-3
G. Li, C. Xu, H. Xu, L. Gan, K. Sun and B. Yuan, Analyst, 148, 2553 (2023); https://doi.org/10.1039/D3AN00291H
Geethukrishnan, O. Apte and K.K. Tadi, Tungsten, 7, 137 (2024); https://doi.org/10.1007/s42864-024-00297-7
C. Wang, P. Xu and K. Zhuo, Anal. Sci., 26, 191 (2014); https://doi.org/10.1002/elan.201300345
M. Pumera, Chem. Rec., 9, 211 (2009); https://doi.org/10.1002/tcr.200900008
D. Li, J. Liu, C.J. Barrow and W. Yang, Chem. Commun., 50, 8197 (2014); https://doi.org/10.1039/c4cc03384a
S. Xu, T. Wang, G. Liu, Z. Cao, L.A. Frank, S. Jiang, C. Zhang, Z. Li, V.V. Krasitskaya, Q. Li, Y. Sha, X. Zhang, H. Liu and J. Wang, Sens. Actuators B Chem., 326, 128991 (2021); https://doi.org/10.1016/j.snb.2020.128991
A.R. Jalalvand and M.M. Karami, Sens. Bio-Sens. Res., 47, 100733 (2025); https://doi.org/10.1016/j.sbsr.2024.100733
N. Mushahary, A. Sarkar, F. Basumatary, S. Brahma, B. Das and S. Basumatary, Result Surfaces Interfaces, 15, 10025 (2024); https://doi.org/10.1016/j.rsurfi.2024.100225
S.S. Sekhon, P. Kaur, Y.H. Kim and S.S. Sekhon, npj 2D Mater. Appl., 5, 21 (2021); https://doi.org/10.1038/s41699-021-00202-7
J. Liu, C. Shuping, L. Yanan and Z. Bijing, J. Saudi Chem. Soc., 26, 101560 (2022); https://doi.org/10.1016/j.jscs.2022.101560
P.L. Yap, S. Kabiri, Y.L. Auyoong, D.N.H. Tran and D. Losic, ACS Omega, 4, 19505 (2019); https://doi.org/10.1021/acsomega.9b02642
P. Klemp, S.A. Stansfield, B. Castle and M.C. Robertson, Ann. Rheum. Dis., 56, 22 (1997); https://doi.org/10.1136/ard.56.1.22
D. Isin, E. Eksin and A. Erdem, Biosensors, 12, 95 (2022); https://doi.org/10.3390/bios12020095
K. Chen, B. Xu, L. Shen, D. Shen, M. Li and L.-H. Guo, RSC Adv., 12, 19452 (2022); https://doi.org/10.1039/D2RA02547G
P. Kumar, I. Soni, G.K. Jayaprakash, S. Kumar, S. Rao, R. Flores-Moreno and A.S. Sowmyashree, Inorg. Chem. Commun., 146, 110110 (2022); https://doi.org/10.1016/j.inoche.2022.110110
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, A. Slesarev, Z. Sun, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368
N. Murugesan, M. Kandasamy, S. Murugesan, N. Pugazhenthiran, S. Suresh, V.P. Venkatesh, B.K. Balachandar, S.K. Kumar and M.N.M. Ansari, Physica B, 669, 415288 (2023); https://doi.org/10.1016/j.physb.2023.415288
A.C. Ferrari and D.M. Basko, Nat. Nanotechnol., 8, 235 (2013); https://doi.org/10.1038/nnano.2013.46
S.I. Khan, K.K. Tadi, R.R. Chillawar and R.V. Motghare, J. Electrochem. Soc., 165, B804 (2018); https://doi.org/10.1149/2.0121816jes
J.G. Gu, S.P. Cheng, J. Liu and J.D. Gu, J. Polym. Environ., 8, 167 (2000); https://doi.org/10.1023/A:1015293626335
A.J. Bard and L.R. Faulkner, Electrochemical Sensors: Fundamental and Applications, John Wiley & Sons, Inc. edn. 2 (2001).
Y. Abbas, S. Ali, M. Basharat, W. Zou, F. Yang, W. Liu, S. Zhang, Z. Wu, N. Akhtar and D. Wu, ACS Appl. Nano Mater., 3, 11383 (2020); https://doi.org/10.1021/acsanm.0c02466
A. Ajith, N.S.K. Gowthaman, D. Pandiarajan, C. Sugumar and S.A. John, Microchem. J., 199, 110020 (2024); https://doi.org/10.1016/j.microc.2024.110020
E. Iyyappan, S.J. Samuel Justin, P. Wilson and A. Palaniappan, ACS Appl. Nano Mater., 3, 7761 (2020); https://doi.org/10.1021/acsanm.0c01322
H. Zhang and S. Liu, J. Alloys Compd., 842, 155873 (2020); https://doi.org/10.1016/j.jallcom.2020.155873
F. Mazzara, B. Patella, G. Aiello, A. O’Riordan, C. Torino, A. Vilasi and R. Inguanta, Electrochim. Acta, 388, 138652 (2021); https://doi.org/10.1016/j.electacta.2021.138652
X. Xie, D.P. Wang, C. Guo, Y. Liu, Q. Rao, F. Lou, Q. Li, Y. Dong, Q. Li, H.B. Yang and F.X. Hu, Anal. Chem., 93, 4916 (2021); https://doi.org/10.1021/acs.analchem.0c05191
S. Masrat, V. Nagal, M. Khan, A. Ahmad, M.B. Alshammari, S. Alam, U.T. Nakate, B. Lee, P. Mishra, K.S. Bhat and R. Ahmad, ACS Appl. Nano Mater., 6, 16615 (2023); https://doi.org/10.1021/acsanm.3c02794
S. Pramanik, P. Karmakar and D.K. Das, Biointerface Res. Appl. Chem., 13, 134 (2022); https://doi.org/10.33263/BRIAC132.134