Copyright (c) 2025 Shashikala Veldurthi
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Cu2O Nanoparticles Supported on Mesoporous Carbon: Highly Efficient Catalyst for Synthesis of Triazoles
Corresponding Author(s) : V. Shashikala
Asian Journal of Chemistry,
Vol. 37 No. 2 (2025): Vol 37 Issue 2, 2025
Abstract
Triazoles are class of heterocyclic compounds with significant pharmaceutical and industrial applications. An effective catalyst for the synthesis of triazoles using the Click reaction is developed. Highly stable cuprous oxide nanoparticles were dispersed on active carbon prepared from palmyra palm fruit shells. The Cu2O nanoparticles, characterized by their small particle size and high surface area, were successfully synthesized and supported on activated carbon to enhance the catalytic efficiency. Thus, the prepared catalyst exhibited excellent catalytic activity, high selectivity and good reusability in the cycloaddition reaction of azides and alkynes, leading to the efficient synthesis of various triazole derivatives. The Cu2O-AC nanocomposites demonstrated the superior catalytic performance compared to pure Cu2O and activated carbon. All Cu2O supported and unsupported active catalysts were characterized using XRD, FT-IR, SEM and EDX techniques to know the morphology, phase and functional group analysis. The reaction mechanism was investigated using density functional theory (DFT) analyses.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhou, C. Jin, Y. Li and W. Shen, Nanotoday, 20, 101 (2018); https://doi.org/10.1016/j.nantod.2018.04.005
- B.R. Cuenya and F. Behafarid, Surf. Sci. Rep., 70, 135 (2015); https://doi.org/10.1016/j.surfrep.2015.01.001
- H. Jung, S.Y. Lee, C.W. Lee, M.K. Cho, D.H. Won, C. Kim, H.-S. Oh, B.K. Min and Y.J. Hwang, J. Am. Chem. Soc., 141, 4624 (2019); https://doi.org/10.1021/jacs.8b11237
- H. Hu, S. Lu, T. Li, Y. Zhang, C. Guo, H. Zhu, Y. Jin, M. Du and W. Zhang, Nanoscale Adv., 3, 1865 (2021); https://doi.org/10.1039/D1NA00025J
- M. Sankar, Q. He, R.V. Engel, M.A. Sainna, A.J. Logsdail, A. Roldan, D.J. Willock, N. Agarwal, C.J. Kiely and G.J. Hutchings, Chem. Rev., 120, 3890 (2020); https://doi.org/10.1021/acs.chemrev.9b00662
- P. Bernard, P. Stelmachowski, P. Bros, W. Makowski and A. Kotarba, J. Chem. Educ., 98, 935 (2021); https://doi.org/10.1021/acs.jchemed.0c01101
- J. Choi, N. King and P.A. Maggard, ACS Nano, 7, 1699 (2013); https://doi.org/10.1021/nn305707f
- S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei and C.H. Sow, J. Am. Chem. Soc., 134, 4905 (2012); https://doi.org/10.1021/ja211683m
- M.R. Dustgeer, S.T. Asma, A. Jilani, K. Raza, S.Z. Hussain, M.B. Shakoor, J. Iqbal, M.S. Abdel-Wahab and R. Darwesh, Inorg. Chem. Commun., 128, 108606 (2021); https://doi.org/10.1016/j.inoche.2021.108606
- K. Wang, M. Lv, T. Si, X. Tang, H. Wang, Y. Chen and T. Zhou, J. Hazard. Mater., 461, 132479 (2024); https://doi.org/10.1016/j.jhazmat.2023.132479
- A.Y. Mitrofanov, A.V. Murashkina, I. Martín-García, F. Alonso and I.P. Beletskaya, Catal. Sci. Technol., 7, 440 (2017); https://doi.org/10.1039/C7CY01343D
- S. Ferdousi, M.S. Alam, E. Ahmmed, R.S. Brishti and M.A.R. Khan, Results in Chemistry,13,101935 (2024); https://doi.org/10.1016/j.rechem.2024.101935
- M.J. Bröcker, J.M.L. Ho, G.M. Church, D. Söll and P. O’Donoghue, Angew. Chem., 126, 1 (2014); https://doi.org/10.1002/ange.201310509
- S. Ghosh, S. Saha, D. Sengupta, S. Chattopadhyay, G. De and B. Basu, Ind. Eng. Chem. Res., 56, 11726 (2017); https://doi.org/10.1021/acs.iecr.7b02656
- D. Chakraborty, S. Nandi, D. Mullangi, S. Haldar, C.P. Vinod and R. Vaidhyanathan, ACS Appl. Mater. Interfaces, 11, 15670 (2019); https://doi.org/10.1021/acsami.9b02860
- M. Li, X. Xing, Z. Ma, J. Lv, P. Fu and Z. Li, ACS Sustain. Chem.& Eng., 6, 5495 (2018); https://doi.org/10.1021/acssuschemeng.8b00350
- Lili Wan1, QixingZhou, Xin Wang, Thomas E. Wood, Lu Wang, Paul N,http://www.nature.com/natcatal, https://doi.org/10.1038/s41929-019-0338-z
- Safieh Momeni, Fatemeh Sedaghati, Microc (2018); https://doi.org/10.1016/j.microc.2018.07.035
- A. Kerour, S. Boudjadar, R. Bourzami and B. Allouche, J. Solid State Chem., 263, 79 (2018); https://doi.org/10.1016/j.jssc.2018.04.010
- R.T. Addanki Tirumala, A. P. Dadgar, F. Mohammadparast, T. Mou, S.B. Ramakrishnan, B. Wang and M. Andiappan, Green Chem., 21, 5284 (2019); https://doi.org/10.1039/C9GC01930H
- S.D. Senanayake, D. Stacchiola and J.A. Rodriguez, Acc. Chem. Res., 46, 1702 (2013); https://doi.org/10.1021/ar300231p
- A.K. Kar and R. Srivastava, Inorg. Chem. Front., 6, 576 (2019); https://doi.org/10.1039/C8QI01198B
- C.W. Thurner, N. Bonmassar, D. Winkler, L. Haug, K. Ploner, P.D.K. Nezhad, X. Drexler, A. Mohammadi, P.A. van Aken, J. Kunze-Liebhäuser, A. Niaei, J. Bernardi, B. Klötzer and S. Penner, ACS Catal., 12, 7696 (2022); https://doi.org/10.1021/acscatal.2c01584
- R. Javed, M. Zia, S. Naz, S.O. Aisida, N. Ain and Q. Ao, J. Nanobiotechnology, 18, 172 (2020); https://doi.org/10.1186/s12951-020-00704-4
- Q-L. Zhu and Q. Xu, Chem, 1, 220 (2016); https://doi.org/10.1016/j.chempr.2016.07.005
- S. Biswas, A. Pal and T. Pal, RSC Adv., 10, 35449 (2020); https://doi.org/10.1039/D0RA06168A
- M.J. Illán-Gómez, S. Brandán, C. Salinas-Martínez de Lecea and A. Linares-Solano, Fuel, 80, 2001 (2001); https://doi.org/10.1016/S0016-2361(01)00091-6
- M.J. Illan-Gomez, A. Linares-Solano, C.S.-M. de Lecea and J.M. Calo, Energy Fuels, 7, 146 (1993); https://doi.org/10.1021/ef00037a023
- G. Li, A. Iakunkov, N. Boulanger, O.A. Lazar, M. Enachescu, A. Grimm and A.V. Talyzin, RSC Adv., 13, 14543 (2023); https://doi.org/10.1039/D3RA00820G
- G. Tiwari, R.R. Devi, S.P. Mahanta, P.K. Raul, S. Chatterjee and D.V. Kamboj, Inorg. Chem. Commun., 152, 110687 (2023); https://doi.org/10.1016/j.inoche.2023.110687
- C. Boruban and E.N. Esenturk, J. Nanopart. Res., 20, 59 (2018); https://doi.org/10.1007/s11051-018-4139-0
- X. Zhang, P. Gu, X. Li and G. Zhang Chem. Eng. J., 322, 129 (2017); https://doi.org/10.1016/j.cej.2017.03.102
- J. Li, L. Huang, X. Jiang, L. Zhang and X. Sun, Chem. Eng. J., 404, 127091 (2021); https://doi.org/10.1016/j.cej.2020.127091
- M. Saad, A. Szymaszek, A. Bialas, B. Samojeden and M. Motak, Catalysts, 10, 1426 (2020); https://doi.org/10.3390/catal10121426
- J. Wang, T. Fu, F. Meng, D. Zhao, S.S.C. Chuang and Z. Li, Appl. Catal. B, 303, 120890 (2022); https://doi.org/10.1016/j.apcatb.2021.120890
- H. Niu, S. Liu, Y. Cai, F. Wu and X. Zhao, Micropor. Mesopor. Mater., 219, 48 (2016); https://doi.org/10.1016/j.micromeso.2015.07.027
- A.V. Nakhate and G.D. Yadav, Mol. Catal., 451, 209 (2018); https://doi.org/10.1016/j.mcat.2018.01.013
- S.-L. Shi and S.L. Buchwald, Nat. Chem., 7, 38 (2015); https://doi.org/10.1038/nchem.2131
- Y. Liu, Q. Huang, G. Jiang, D. Liu and W. Yu, J. Mater. Res., 32, 3605 (2017); https://doi.org/10.1557/jmr.2017.307
- J. Tian, D. Liu, J. Li, D. Sun, H. Liu, H. Wang and Y. Tang, Chin. Chem. Lett., 32, 2427 (2021); https://doi.org/10.1016/j.cclet.2021.01.022
- M. Waqas, L. Wu, H. Tang, C. Liu, Y. Fan, Z. Jiang, X. Wang, J. Zhong and W. Chen, ACS Appl. Nano Mater., 3, 4788 (2020); https://doi.org/10.1021/acsanm.0c00847
- R. Anumandla, P. Shanigaram, R. Samineni and S. Veldurthi, A Method to Prepare Highly Stable Carbon Encapsulated Nano Cu2O Spheres (CEN-Cu2O spheres), Indian Patent no. 551165 (2024).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J. V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT (2010).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- R. Dennington, T. Keith and J. Millam, Gauss View, Version 5.0, Semichem Inc, Shawnee Mission (2009).
- S. Sonal, P. Prakash, B.K. Mishra and G.C. Nayak, RSC Adv., 10, 13783 (2020); https://doi.org/10.1039/C9RA10103A
- B. Yan, S. Huang, S. Wang and X. Ma., ChemCatChem, 6, 2671 (2014); https://doi.org/10.1002/cctc.201402201
- Z. Lendzion-Bieluñ, L. Czekajlo, D. Sibera, D. Moszyñski, J. Sreñscek-Nazzal, A.W. Morawski, R.J. Wrobel, B. Michalkiewicz, W. Arabczyk and U. Narkiewicz, Adsorpt. Sci. Technol., 36, 478 (2018); https://doi.org/10.1177/0263617417704527
- R. Anumandla, P. Shanigaram, R. Samineni, M. Varukolu, S.K. D, P. Kokku, S. Challapalli and S. Veldurthi, J. Mol. Struct., 1321, 139798 (2025); https://doi.org/10.1016/j.molstruc.2024.139798
- M. Varukolu, M. Palnati, V. Nampally, S. Gangadhari, M. Vadluri and P. Tigulla, ACS Omega, 7, 810 (2022); https://doi.org/10.1021/acsomega.1c05464
- V. Mahipal, N. Venkatesh, B. Naveen, G. Suresh, V. Manaiah and T. Parthasarathy, Chem. Data.Coll., 28, 100474 (2020); https://doi.org/10.1016/j.cdc.2020.100474
References
Y. Zhou, C. Jin, Y. Li and W. Shen, Nanotoday, 20, 101 (2018); https://doi.org/10.1016/j.nantod.2018.04.005
B.R. Cuenya and F. Behafarid, Surf. Sci. Rep., 70, 135 (2015); https://doi.org/10.1016/j.surfrep.2015.01.001
H. Jung, S.Y. Lee, C.W. Lee, M.K. Cho, D.H. Won, C. Kim, H.-S. Oh, B.K. Min and Y.J. Hwang, J. Am. Chem. Soc., 141, 4624 (2019); https://doi.org/10.1021/jacs.8b11237
H. Hu, S. Lu, T. Li, Y. Zhang, C. Guo, H. Zhu, Y. Jin, M. Du and W. Zhang, Nanoscale Adv., 3, 1865 (2021); https://doi.org/10.1039/D1NA00025J
M. Sankar, Q. He, R.V. Engel, M.A. Sainna, A.J. Logsdail, A. Roldan, D.J. Willock, N. Agarwal, C.J. Kiely and G.J. Hutchings, Chem. Rev., 120, 3890 (2020); https://doi.org/10.1021/acs.chemrev.9b00662
P. Bernard, P. Stelmachowski, P. Bros, W. Makowski and A. Kotarba, J. Chem. Educ., 98, 935 (2021); https://doi.org/10.1021/acs.jchemed.0c01101
J. Choi, N. King and P.A. Maggard, ACS Nano, 7, 1699 (2013); https://doi.org/10.1021/nn305707f
S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei and C.H. Sow, J. Am. Chem. Soc., 134, 4905 (2012); https://doi.org/10.1021/ja211683m
M.R. Dustgeer, S.T. Asma, A. Jilani, K. Raza, S.Z. Hussain, M.B. Shakoor, J. Iqbal, M.S. Abdel-Wahab and R. Darwesh, Inorg. Chem. Commun., 128, 108606 (2021); https://doi.org/10.1016/j.inoche.2021.108606
K. Wang, M. Lv, T. Si, X. Tang, H. Wang, Y. Chen and T. Zhou, J. Hazard. Mater., 461, 132479 (2024); https://doi.org/10.1016/j.jhazmat.2023.132479
A.Y. Mitrofanov, A.V. Murashkina, I. Martín-García, F. Alonso and I.P. Beletskaya, Catal. Sci. Technol., 7, 440 (2017); https://doi.org/10.1039/C7CY01343D
S. Ferdousi, M.S. Alam, E. Ahmmed, R.S. Brishti and M.A.R. Khan, Results in Chemistry,13,101935 (2024); https://doi.org/10.1016/j.rechem.2024.101935
M.J. Bröcker, J.M.L. Ho, G.M. Church, D. Söll and P. O’Donoghue, Angew. Chem., 126, 1 (2014); https://doi.org/10.1002/ange.201310509
S. Ghosh, S. Saha, D. Sengupta, S. Chattopadhyay, G. De and B. Basu, Ind. Eng. Chem. Res., 56, 11726 (2017); https://doi.org/10.1021/acs.iecr.7b02656
D. Chakraborty, S. Nandi, D. Mullangi, S. Haldar, C.P. Vinod and R. Vaidhyanathan, ACS Appl. Mater. Interfaces, 11, 15670 (2019); https://doi.org/10.1021/acsami.9b02860
M. Li, X. Xing, Z. Ma, J. Lv, P. Fu and Z. Li, ACS Sustain. Chem.& Eng., 6, 5495 (2018); https://doi.org/10.1021/acssuschemeng.8b00350
Lili Wan1, QixingZhou, Xin Wang, Thomas E. Wood, Lu Wang, Paul N,http://www.nature.com/natcatal, https://doi.org/10.1038/s41929-019-0338-z
Safieh Momeni, Fatemeh Sedaghati, Microc (2018); https://doi.org/10.1016/j.microc.2018.07.035
A. Kerour, S. Boudjadar, R. Bourzami and B. Allouche, J. Solid State Chem., 263, 79 (2018); https://doi.org/10.1016/j.jssc.2018.04.010
R.T. Addanki Tirumala, A. P. Dadgar, F. Mohammadparast, T. Mou, S.B. Ramakrishnan, B. Wang and M. Andiappan, Green Chem., 21, 5284 (2019); https://doi.org/10.1039/C9GC01930H
S.D. Senanayake, D. Stacchiola and J.A. Rodriguez, Acc. Chem. Res., 46, 1702 (2013); https://doi.org/10.1021/ar300231p
A.K. Kar and R. Srivastava, Inorg. Chem. Front., 6, 576 (2019); https://doi.org/10.1039/C8QI01198B
C.W. Thurner, N. Bonmassar, D. Winkler, L. Haug, K. Ploner, P.D.K. Nezhad, X. Drexler, A. Mohammadi, P.A. van Aken, J. Kunze-Liebhäuser, A. Niaei, J. Bernardi, B. Klötzer and S. Penner, ACS Catal., 12, 7696 (2022); https://doi.org/10.1021/acscatal.2c01584
R. Javed, M. Zia, S. Naz, S.O. Aisida, N. Ain and Q. Ao, J. Nanobiotechnology, 18, 172 (2020); https://doi.org/10.1186/s12951-020-00704-4
Q-L. Zhu and Q. Xu, Chem, 1, 220 (2016); https://doi.org/10.1016/j.chempr.2016.07.005
S. Biswas, A. Pal and T. Pal, RSC Adv., 10, 35449 (2020); https://doi.org/10.1039/D0RA06168A
M.J. Illán-Gómez, S. Brandán, C. Salinas-Martínez de Lecea and A. Linares-Solano, Fuel, 80, 2001 (2001); https://doi.org/10.1016/S0016-2361(01)00091-6
M.J. Illan-Gomez, A. Linares-Solano, C.S.-M. de Lecea and J.M. Calo, Energy Fuels, 7, 146 (1993); https://doi.org/10.1021/ef00037a023
G. Li, A. Iakunkov, N. Boulanger, O.A. Lazar, M. Enachescu, A. Grimm and A.V. Talyzin, RSC Adv., 13, 14543 (2023); https://doi.org/10.1039/D3RA00820G
G. Tiwari, R.R. Devi, S.P. Mahanta, P.K. Raul, S. Chatterjee and D.V. Kamboj, Inorg. Chem. Commun., 152, 110687 (2023); https://doi.org/10.1016/j.inoche.2023.110687
C. Boruban and E.N. Esenturk, J. Nanopart. Res., 20, 59 (2018); https://doi.org/10.1007/s11051-018-4139-0
X. Zhang, P. Gu, X. Li and G. Zhang Chem. Eng. J., 322, 129 (2017); https://doi.org/10.1016/j.cej.2017.03.102
J. Li, L. Huang, X. Jiang, L. Zhang and X. Sun, Chem. Eng. J., 404, 127091 (2021); https://doi.org/10.1016/j.cej.2020.127091
M. Saad, A. Szymaszek, A. Bialas, B. Samojeden and M. Motak, Catalysts, 10, 1426 (2020); https://doi.org/10.3390/catal10121426
J. Wang, T. Fu, F. Meng, D. Zhao, S.S.C. Chuang and Z. Li, Appl. Catal. B, 303, 120890 (2022); https://doi.org/10.1016/j.apcatb.2021.120890
H. Niu, S. Liu, Y. Cai, F. Wu and X. Zhao, Micropor. Mesopor. Mater., 219, 48 (2016); https://doi.org/10.1016/j.micromeso.2015.07.027
A.V. Nakhate and G.D. Yadav, Mol. Catal., 451, 209 (2018); https://doi.org/10.1016/j.mcat.2018.01.013
S.-L. Shi and S.L. Buchwald, Nat. Chem., 7, 38 (2015); https://doi.org/10.1038/nchem.2131
Y. Liu, Q. Huang, G. Jiang, D. Liu and W. Yu, J. Mater. Res., 32, 3605 (2017); https://doi.org/10.1557/jmr.2017.307
J. Tian, D. Liu, J. Li, D. Sun, H. Liu, H. Wang and Y. Tang, Chin. Chem. Lett., 32, 2427 (2021); https://doi.org/10.1016/j.cclet.2021.01.022
M. Waqas, L. Wu, H. Tang, C. Liu, Y. Fan, Z. Jiang, X. Wang, J. Zhong and W. Chen, ACS Appl. Nano Mater., 3, 4788 (2020); https://doi.org/10.1021/acsanm.0c00847
R. Anumandla, P. Shanigaram, R. Samineni and S. Veldurthi, A Method to Prepare Highly Stable Carbon Encapsulated Nano Cu2O Spheres (CEN-Cu2O spheres), Indian Patent no. 551165 (2024).
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J. V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT (2010).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
R. Dennington, T. Keith and J. Millam, Gauss View, Version 5.0, Semichem Inc, Shawnee Mission (2009).
S. Sonal, P. Prakash, B.K. Mishra and G.C. Nayak, RSC Adv., 10, 13783 (2020); https://doi.org/10.1039/C9RA10103A
B. Yan, S. Huang, S. Wang and X. Ma., ChemCatChem, 6, 2671 (2014); https://doi.org/10.1002/cctc.201402201
Z. Lendzion-Bieluñ, L. Czekajlo, D. Sibera, D. Moszyñski, J. Sreñscek-Nazzal, A.W. Morawski, R.J. Wrobel, B. Michalkiewicz, W. Arabczyk and U. Narkiewicz, Adsorpt. Sci. Technol., 36, 478 (2018); https://doi.org/10.1177/0263617417704527
R. Anumandla, P. Shanigaram, R. Samineni, M. Varukolu, S.K. D, P. Kokku, S. Challapalli and S. Veldurthi, J. Mol. Struct., 1321, 139798 (2025); https://doi.org/10.1016/j.molstruc.2024.139798
M. Varukolu, M. Palnati, V. Nampally, S. Gangadhari, M. Vadluri and P. Tigulla, ACS Omega, 7, 810 (2022); https://doi.org/10.1021/acsomega.1c05464
V. Mahipal, N. Venkatesh, B. Naveen, G. Suresh, V. Manaiah and T. Parthasarathy, Chem. Data.Coll., 28, 100474 (2020); https://doi.org/10.1016/j.cdc.2020.100474