Copyright (c) 2025 Simplice KOUDJINA, John A. Agwupuye, Terkumbur E. Gber, Muhammad Zeeshan, Providence B. Ashishie, Sidra Batool, Prince David, Eleonore Y. Ladekan, Guy Y.S. Atohoun

This work is licensed under a Creative Commons Attribution 4.0 International License.
Mechanistic Molecular Insights and Quantum Biological Properties of Methyl-Imidazole Derivatives as Potential Anticancer Agents
Corresponding Author(s) : Simplice Koudjina
Asian Journal of Chemistry,
Vol. 37 No. 5 (2025): Vol 37 Issue 5, 2025
Abstract
Methyl-imidazole derivatives are attracting considerable scientific attention because of their extensive and significant bioactivities. Hence, this work focuses on the investigation of the geometry, frontier molecular orbitals (FMOs), HOMO-LUMO energy gap, molecular docking, bioavailability, ADMET and pharmacokinetic properties of 1-(4-methoxyphenyl)-2,4,5-trimethyl-1H-imidazole (M1), 4-(4,5-dimethyl-1H-imidazol-1-yl)benzenesulfonic acid (M2), N-hydroxy-N-(4-(2,4,6-trimethyl-1H-imidazol-1-yl)phenyl)hydroxylamine (M3) and 2,4,5-trimethyl-1H-imidazole (M4) respectively, utilizing DFT at 6-311++g(d,p) basis set with different functionals viz. B3LYP, B3PW91, M062X, PBE0 and ωB967XD. A high-level quantum computational study and molecular docking were performed to ascertain the stability, reactivity and drug likeness of the titled molecules. Especially, compound M2 had the least energy gap (3.92 eV) and its reactivity can be explained based on the attached sulphonic substituent compared to M1, M3 and M4, respectively. Interestingly, the studied compounds showed good biological activities against various cancer proteins with PDB IDs 3F66, 4XVE, 1XF0 and 5Y8Y. The studied molecules present a valuable opportunity for developing cancer drugs with improved therapeutic indices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Yuan, S. Majumder, M. Yang and S.R. Guo, Tetrahedron Lett., 61, 151506 (2020); https://doi.org/10.1016/j.tetlet.2019.151506
- I. Ali, M.N. Lone and H.Y. Aboul-Enein, MedChemComm, 8, 1742 (2017); https://doi.org/10.1039/C7MD00067G
- A. Rammohan, B.V. Bhaskar and G.V. Zyryanov, in eds.: P. Singh, Recent Developments in the Synthesis of Pyridine Analogues as a Potent Anti-Alzheimer's Therapeutic Leads, In: Recent Developments in the Synthesis and Applications of Pyridines, Elsevier, Chap. 13, pp. 411-444 (2023); https://doi.org/10.1016/B978-0-323-91221-1.00009-9
- A.M. Abu-Dief, L.H. Abdel-Rahman, A.A. Abdelhamid, A.A. Marzouk, M.R. Shehata, M.A. Bakheet, O.A. Almaghrabi and A. Nafady, Spectrochim. Acta A Mol. Biomol. Spectrosc., 228, 117700 (2020); https://doi.org/10.1016/j.saa.2019.117700
- N. Kumar and N. Goel, Phys. Sci. Rev.., 8, 2903 (2021); https://doi.org/10.1515/psr-2021-0041
- Y. Chen, K. Tao, W. Ji, V.B. Kumar, S. Rencus-Lazar and E. Gazit, Mater. Today, 60, 106 (2022); https://doi.org/10.1016/j.mattod.2022.08.011
- N. Behera and V. Manivannan, ChemistrySelect, 1, 4016 (2016); https://doi.org/10.1002/slct.201600799
- I. Tabushi and Y. Kuroda, J. Am. Chem. Soc., 106, 4580 (1984); https://doi.org/10.1021/ja00328a047
- U. Eduok, O. Faye and J. Szpunar, RSC Adv., 6, 108777 (2016); https://doi.org/10.1039/C6RA23099G
- P. Lienard, J. Gavartin, G. Boccardi and M. Meunier, Pharm. Res., 32, 300 (2015); https://doi.org/10.1007/s11095-014-1463-7
- N.J. Britto, M. Jaccob, P. Comba, K. Anandababu and R. Mayilmurugan, J. Inorg. Biochem., 238, 112066 (2023); https://doi.org/10.1016/j.jinorgbio.2022.112066
- V.M. Rayón, H. Valdés, N. Díaz and D. Suárez, J. Chem. Theory Comput., 4, 243 (2008); https://doi.org/10.1021/ct700229e
- K. Boussouf, R. Boulmene, M. Prakash, N. Komiha, M. Taleb, M.M. Al-Mogren and M. Hochlaf, Phys. Chem. Chem. Phys., 17, 14417 (2015); https://doi.org/10.1039/C4CP06108J
- O.M.H. Salo-Ahen, I. Alanko, R. Bhadane, A.M.J.J. Bonvin, R.V. Honorato, S. Hossain, A.H. Juffer, A. Kabedev, M. Lahtela-Kakkonen, A.S. Larsen, E. Lescrinier, P. Marimuthu, M.U. Mirza, G. Mustafa, A. Nunes-Alves, T. Pantsar, A. Saadabadi, K. Singaravelu and M. Vanmeert, Processes, 9, 71 (2020); https://doi.org/10.3390/pr9010071
- A.R. Leach, Molecular Modelling: Principles and Applications. Pearson Education Limited. Edinburgh Gate, Harlow, Essex CM20 2JE (2001).
- W.F. Van Gunsteren and H.J. Berendsen, Angew. Chem. Int. Ed. Engl., 29, 992 (1990); https://doi.org/10.1002/anie.199009921
- M.A. Saller, A. Kelly and E. Geva, J. Phys. Chem. Lett., 12, 3163 (2021); https://doi.org/10.1021/acs.jpclett.1c00158
- E. Bremond, I. Ciofini, J.C. Sancho-García and C. Adamo, Acc. Chem. Res., 49, 1503 (2016); https://doi.org/10.1021/acs.accounts.6b00232
- E. Torres and G.A. DiLabio, J. Phys. Chem. Lett., 3, 1738 (2012); https://doi.org/10.1021/jz300554y
- M. Blaško, L.F. Pašteka and M. Urban, J. Phys. Chem. A, 125, 7382 (2021); https://doi.org/10.1021/acs.jpca.1c04793
- E.A. Eno, H. Louis, P. Ekoja, I. Benjamin, S.A. Adalikwu, M.M. Orosun, T.O. Unimuke, F.C. Asogwa and E.C. Agwamba, J. Indian Chem. Soc., 99, 100532 (2022); https://doi.org/10.1016/j.jics.2022.100532
- R. Peverati and D.G. Truhlar, J. Chem. Theory Comput., 8, 2310 (2012); https://doi.org/10.1021/ct3002656
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell and J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, A.P. Rendell, K. Raghavachari, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT (2016).
- R. Dennington, T.A. Keith and J.M. Millam, GaussView 6.0. 16. Semichem Inc.: Shawnee Mission, KS, USA (2016).
- T. Tsuneda, J.-W. Song, S. Suzuki and K. Hirao, J. Chem. Phys., 133, 174101 (2010); https://doi.org/10.1063/1.3491272
- S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 32, 1456 (2011); https://doi.org/10.1002/jcc.21759
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 132, 154104 (2010); https://doi.org/10.1063/1.3382344
- S. Grimme, J. Comput. Chem., 27, 1787 (2006); https://doi.org/10.1002/jcc.20495
- J.P. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 105, 9982 (1996); https://doi.org/10.1063/1.472933
- X.H. Li, Z.X. Tang and X.Z. Zhang, Int. J. Quantum Chem., 110, 1565 (2010); https://doi.org/10.1002/qua.22295
- F. Weinhold, J. Comput. Chem., 33, 2363 (2012); https://doi.org/10.1002/jcc.23060
- LeadIT version 12.1.0; BioSolveIT GmbH, Sankt Augustin, Germany, (2023).
- I. Akinwumi, A. Faleti, A. Owojuyigbe, F. Raji and M. Alaka, J. Adv. Pharm. Res., 6, 107 (2022); https://doi.org/10.21608/aprh.2022.139794.1175
- Z. Nawaz, N. Riaz, M. Saleem, A. Iqbal, S.A. Ejaz, S. Muzaffar, B. Bashir, M. Ashraf, A. Rehman, M.S. Bilal, B.K. Prabhala and S. Sajid, Heliyon, 10, e35278 (2024); https://doi.org/10.1016/j.heliyon.2024.e35278
- V. Gapsys, A. Yildirim, M. Aldeghi, Y. Khalak, D. van der Spoel and B.L. de Groot, Commun. Chem., 4, 61 (2021); https://doi.org/10.1038/s42004-021-00498-y
- L. Côrte-Real, V. Pósa, M. Martins, R. Colucas, N.V. May, X. Fontrodona, I. Romero, F. Mendes, C. Pinto Reis, M.M. Gaspar, J.C. Pessoa, É.A. Enyedy and I. Correia, Inorg. Chem., 62, 11466 (2023); https://doi.org/10.1021/acs.inorgchem.3c01066
- P.A. Nikitina and V.P. Perevalov, Chem. Heterocycl. Comp., 53, 123 (2017); https://doi.org/10.1007/s10593-017-2030-z
- A. Sharma, V. Kumar, R. Kharb, S. Kumar, P.C. Sharma and D.P. Pathak, Curr. Pharm. Design, 22, 3265 (2016); https://doi.org/10.2174/1381612822666160226144333
- P.R. Varadwaj, A. Varadwaj, H.M. Marques and K. Yamashita, Int. J. Mol. Sci., 23, 1263 (2022); https://doi.org/10.3390/ijms23031263
- G.V. Gibbs, F.C. Hawthorne and G.E. Brown Jr., Am. Mineral., 107, 1219 (2022); https://doi.org/10.2138/am-2021-7938
- X. Fang, L. Liu, J. Lei, D. He, S. Zhang, J. Zhou, F. Wang, H. Wu and H. Wang, Nat. Mach. Intell., 4, 127 (2022); https://doi.org/10.1038/s42256-021-00438-4
- J.A. Agwupuye, H. Louis, T.E. Gber, I. Ahmad, E.C. Agwamba, A.B. Samuel, E.J. Ejiako, H. Patel, I.T. Ita and V.M. Bassey, Chem. Phys. Impact, 5, 100122 (2022); https://doi.org/10.1016/j.chphi.2022.100122
- J.A. Agwupuye, T.E. Gber, H.O. Edet, M. Zeeshan, S. Batool, O.E.E. Duke, P.O. Adah, J.O. Odey and G.E. Egbung, Chem. Phys. Impact, 6, 100146 (2023); https://doi.org/10.1016/j.chphi.2022.100146
- A. Zochedh, M. Priya, A. Shunmuganarayanan, K. Thandavarayan and A.B. Sultan, J. Mol. Struct., 1268, 133651 (2022); https://doi.org/10.1016/j.molstruc.2022.133651
- J.A. Agwupuye, H. Louis, T.O. Unimuke, P. David, E.I. Ubana and Y.L. Moshood, J. Mol. Liq., 337, 116458 (2021); https://doi.org/10.1016/j.molliq.2021.116458
- M.I. Ofem, H. Louis, J.A. Agwupuye, U.S. Ameuru, G.C. Apebende, T.E. Gber, J.O. Odey, N. Musa and A. Ayi, BMC Chem., 16, 109 (2022); https://doi.org/10.1186/s13065-022-00896-w
- M.D. Mohammadi, F. Abbas, H. Louis, L.E. Afahanam and T.E. Gber, ChemistrySelect, 7, e202202535 (2022); https://doi.org/10.1002/slct.202202535
- T.E. Gber, H. Louis, A.E. Owen, B.E. Etinwa, I. Benjamin, F.C. Asogwa, M.M. Orosun and E.A. Eno, RSC Adv., 12, 25992 (2022); https://doi.org/10.1039/D2RA04028J
- J.A. Agwupuye, H. Louis, O.C. Enudi, T.O. Unimuke and M.M. Edim, Mater. Chem. Phys., 275, 125239 (2022); https://doi.org/10.1016/j.matchemphys.2021.125239
- A. El-Rayyes, R. T. Mogharbel, M. H. Abdel-Rhman, M. A. Ismail and E. Abdel-Latif, Bull. Chem. Soc. Ethiop., 37, 1275 (2023); https://doi.org/10.4314/bcse.v37i5.18
- J.P. Wagner and P.R. Schreiner, Angew. Chem. Int. Ed., 54, 12274 (2015); https://doi.org/10.1002/anie.201503476
- P. Csermely, T. Korcsmáros, H.J. Kiss, G. London and R. Nussinov, Pharmacol. Ther., 138, 333 (2013); https://doi.org/10.1016/j.pharmthera.2013.01.016
- N.A. Dashatan, M.R. Tavirani, H. Zali, M. Koushki and N. Ahmadi, Galen Med. J., 7, e1129 (2018); https://doi.org/10.31661/gmj.v7i0.1129
- Y. Riadi, M.H. Geesi, S.A. Ejaz, O. Afzal and A. Oubella, J. Mol. Struct., 1322, 140420 (2025); https://doi.org/10.1016/j.molstruc.2024.140420
- M. Aziz, S.A. Ejaz, N. Tamam, F. Siddique, N. Riaz, F.A. Qais, S. Chtita and J. Iqbal, Sci. Rep., 12, 6404 (2022); https://doi.org/10.1038/s41598-022-10253-5
- J. Porter, S. Lumb, F. Lecomte, J. Reuberson, A. Foley, M. Calmiano, K. le Riche, H. Edwards, J. Delgado, R.J. Franklin, J.M. Gascon-Simorte, A. Maloney, C. Meier and M. Batchelor, Bioorg. Med. Chem. Lett., 19, 397 (2009); https://doi.org/10.1016/j.bmcl.2008.11.062
- Y. Amano, T. Yamaguchi, T. Niimi and H. Sakashita, Acta Crystallogr. D Biol. Crystallogr., 71, 918 (2015); https://doi.org/10.1107/S1399004715002175
- W. Qiu, M. Zhou, F. Labrie and S.X. Lin, Mol. Endocrinol., 18, 1798 (2004); https://doi.org/10.1210/me.2004-0032
- M. Zhang, Y. Zhang, M. Song, X. Xue, J. Wang, C. Wang, C. Zhang, C. Li, Q. Xiang, L. Zou, X. Wu, C. Wu, B. Dong, W. Xue, Y. Zhou, H. Chen, D. Wu, K. Ding and Y. Xu, J. Med. Chem., 61, 3037 (2018); https://doi.org/10.1021/acs.jmedchem.8b00103
- A. Kosiha, K.M. Lo, C. Parthiban and K.P. Elango, Mater. Sci. Eng. C, 94, 778 (2019); https://doi.org/10.1016/j.msec.2018.10.021
- L. Ozalp, S.S. Erdem, B. Yüce-Dursun, Ö. Mutlu and M. Özbil, Comput. Biol. Chem., 77, 87 (2018); https://doi.org/10.1016/j.compbiolchem.2018.09.009
- S.H. Abdullahi, A. Uzairu, G.A. Shallangwa, S. Uba and A.B. Umar, Chemistry Africa, 6, 1381 (2023); https://doi.org/10.1007/s42250-023-00592-9
- A. Ahmed, A. Saeed, S.A. Ejaz, M. Aziz, M.Z. Hashmi, P.A. Channar, Q. Abbas, H. Raza, Z. Shafiq and H.R. El-Seedi, RSC Advances, 12, 11974 (2022); https://doi.org/10.1039/D1RA09318E
References
Y. Yuan, S. Majumder, M. Yang and S.R. Guo, Tetrahedron Lett., 61, 151506 (2020); https://doi.org/10.1016/j.tetlet.2019.151506
I. Ali, M.N. Lone and H.Y. Aboul-Enein, MedChemComm, 8, 1742 (2017); https://doi.org/10.1039/C7MD00067G
A. Rammohan, B.V. Bhaskar and G.V. Zyryanov, in eds.: P. Singh, Recent Developments in the Synthesis of Pyridine Analogues as a Potent Anti-Alzheimer's Therapeutic Leads, In: Recent Developments in the Synthesis and Applications of Pyridines, Elsevier, Chap. 13, pp. 411-444 (2023); https://doi.org/10.1016/B978-0-323-91221-1.00009-9
A.M. Abu-Dief, L.H. Abdel-Rahman, A.A. Abdelhamid, A.A. Marzouk, M.R. Shehata, M.A. Bakheet, O.A. Almaghrabi and A. Nafady, Spectrochim. Acta A Mol. Biomol. Spectrosc., 228, 117700 (2020); https://doi.org/10.1016/j.saa.2019.117700
N. Kumar and N. Goel, Phys. Sci. Rev.., 8, 2903 (2021); https://doi.org/10.1515/psr-2021-0041
Y. Chen, K. Tao, W. Ji, V.B. Kumar, S. Rencus-Lazar and E. Gazit, Mater. Today, 60, 106 (2022); https://doi.org/10.1016/j.mattod.2022.08.011
N. Behera and V. Manivannan, ChemistrySelect, 1, 4016 (2016); https://doi.org/10.1002/slct.201600799
I. Tabushi and Y. Kuroda, J. Am. Chem. Soc., 106, 4580 (1984); https://doi.org/10.1021/ja00328a047
U. Eduok, O. Faye and J. Szpunar, RSC Adv., 6, 108777 (2016); https://doi.org/10.1039/C6RA23099G
P. Lienard, J. Gavartin, G. Boccardi and M. Meunier, Pharm. Res., 32, 300 (2015); https://doi.org/10.1007/s11095-014-1463-7
N.J. Britto, M. Jaccob, P. Comba, K. Anandababu and R. Mayilmurugan, J. Inorg. Biochem., 238, 112066 (2023); https://doi.org/10.1016/j.jinorgbio.2022.112066
V.M. Rayón, H. Valdés, N. Díaz and D. Suárez, J. Chem. Theory Comput., 4, 243 (2008); https://doi.org/10.1021/ct700229e
K. Boussouf, R. Boulmene, M. Prakash, N. Komiha, M. Taleb, M.M. Al-Mogren and M. Hochlaf, Phys. Chem. Chem. Phys., 17, 14417 (2015); https://doi.org/10.1039/C4CP06108J
O.M.H. Salo-Ahen, I. Alanko, R. Bhadane, A.M.J.J. Bonvin, R.V. Honorato, S. Hossain, A.H. Juffer, A. Kabedev, M. Lahtela-Kakkonen, A.S. Larsen, E. Lescrinier, P. Marimuthu, M.U. Mirza, G. Mustafa, A. Nunes-Alves, T. Pantsar, A. Saadabadi, K. Singaravelu and M. Vanmeert, Processes, 9, 71 (2020); https://doi.org/10.3390/pr9010071
A.R. Leach, Molecular Modelling: Principles and Applications. Pearson Education Limited. Edinburgh Gate, Harlow, Essex CM20 2JE (2001).
W.F. Van Gunsteren and H.J. Berendsen, Angew. Chem. Int. Ed. Engl., 29, 992 (1990); https://doi.org/10.1002/anie.199009921
M.A. Saller, A. Kelly and E. Geva, J. Phys. Chem. Lett., 12, 3163 (2021); https://doi.org/10.1021/acs.jpclett.1c00158
E. Bremond, I. Ciofini, J.C. Sancho-García and C. Adamo, Acc. Chem. Res., 49, 1503 (2016); https://doi.org/10.1021/acs.accounts.6b00232
E. Torres and G.A. DiLabio, J. Phys. Chem. Lett., 3, 1738 (2012); https://doi.org/10.1021/jz300554y
M. Blaško, L.F. Pašteka and M. Urban, J. Phys. Chem. A, 125, 7382 (2021); https://doi.org/10.1021/acs.jpca.1c04793
E.A. Eno, H. Louis, P. Ekoja, I. Benjamin, S.A. Adalikwu, M.M. Orosun, T.O. Unimuke, F.C. Asogwa and E.C. Agwamba, J. Indian Chem. Soc., 99, 100532 (2022); https://doi.org/10.1016/j.jics.2022.100532
R. Peverati and D.G. Truhlar, J. Chem. Theory Comput., 8, 2310 (2012); https://doi.org/10.1021/ct3002656
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell and J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, A.P. Rendell, K. Raghavachari, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT (2016).
R. Dennington, T.A. Keith and J.M. Millam, GaussView 6.0. 16. Semichem Inc.: Shawnee Mission, KS, USA (2016).
T. Tsuneda, J.-W. Song, S. Suzuki and K. Hirao, J. Chem. Phys., 133, 174101 (2010); https://doi.org/10.1063/1.3491272
S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 32, 1456 (2011); https://doi.org/10.1002/jcc.21759
S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 132, 154104 (2010); https://doi.org/10.1063/1.3382344
S. Grimme, J. Comput. Chem., 27, 1787 (2006); https://doi.org/10.1002/jcc.20495
J.P. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 105, 9982 (1996); https://doi.org/10.1063/1.472933
X.H. Li, Z.X. Tang and X.Z. Zhang, Int. J. Quantum Chem., 110, 1565 (2010); https://doi.org/10.1002/qua.22295
F. Weinhold, J. Comput. Chem., 33, 2363 (2012); https://doi.org/10.1002/jcc.23060
LeadIT version 12.1.0; BioSolveIT GmbH, Sankt Augustin, Germany, (2023).
I. Akinwumi, A. Faleti, A. Owojuyigbe, F. Raji and M. Alaka, J. Adv. Pharm. Res., 6, 107 (2022); https://doi.org/10.21608/aprh.2022.139794.1175
Z. Nawaz, N. Riaz, M. Saleem, A. Iqbal, S.A. Ejaz, S. Muzaffar, B. Bashir, M. Ashraf, A. Rehman, M.S. Bilal, B.K. Prabhala and S. Sajid, Heliyon, 10, e35278 (2024); https://doi.org/10.1016/j.heliyon.2024.e35278
V. Gapsys, A. Yildirim, M. Aldeghi, Y. Khalak, D. van der Spoel and B.L. de Groot, Commun. Chem., 4, 61 (2021); https://doi.org/10.1038/s42004-021-00498-y
L. Côrte-Real, V. Pósa, M. Martins, R. Colucas, N.V. May, X. Fontrodona, I. Romero, F. Mendes, C. Pinto Reis, M.M. Gaspar, J.C. Pessoa, É.A. Enyedy and I. Correia, Inorg. Chem., 62, 11466 (2023); https://doi.org/10.1021/acs.inorgchem.3c01066
P.A. Nikitina and V.P. Perevalov, Chem. Heterocycl. Comp., 53, 123 (2017); https://doi.org/10.1007/s10593-017-2030-z
A. Sharma, V. Kumar, R. Kharb, S. Kumar, P.C. Sharma and D.P. Pathak, Curr. Pharm. Design, 22, 3265 (2016); https://doi.org/10.2174/1381612822666160226144333
P.R. Varadwaj, A. Varadwaj, H.M. Marques and K. Yamashita, Int. J. Mol. Sci., 23, 1263 (2022); https://doi.org/10.3390/ijms23031263
G.V. Gibbs, F.C. Hawthorne and G.E. Brown Jr., Am. Mineral., 107, 1219 (2022); https://doi.org/10.2138/am-2021-7938
X. Fang, L. Liu, J. Lei, D. He, S. Zhang, J. Zhou, F. Wang, H. Wu and H. Wang, Nat. Mach. Intell., 4, 127 (2022); https://doi.org/10.1038/s42256-021-00438-4
J.A. Agwupuye, H. Louis, T.E. Gber, I. Ahmad, E.C. Agwamba, A.B. Samuel, E.J. Ejiako, H. Patel, I.T. Ita and V.M. Bassey, Chem. Phys. Impact, 5, 100122 (2022); https://doi.org/10.1016/j.chphi.2022.100122
J.A. Agwupuye, T.E. Gber, H.O. Edet, M. Zeeshan, S. Batool, O.E.E. Duke, P.O. Adah, J.O. Odey and G.E. Egbung, Chem. Phys. Impact, 6, 100146 (2023); https://doi.org/10.1016/j.chphi.2022.100146
A. Zochedh, M. Priya, A. Shunmuganarayanan, K. Thandavarayan and A.B. Sultan, J. Mol. Struct., 1268, 133651 (2022); https://doi.org/10.1016/j.molstruc.2022.133651
J.A. Agwupuye, H. Louis, T.O. Unimuke, P. David, E.I. Ubana and Y.L. Moshood, J. Mol. Liq., 337, 116458 (2021); https://doi.org/10.1016/j.molliq.2021.116458
M.I. Ofem, H. Louis, J.A. Agwupuye, U.S. Ameuru, G.C. Apebende, T.E. Gber, J.O. Odey, N. Musa and A. Ayi, BMC Chem., 16, 109 (2022); https://doi.org/10.1186/s13065-022-00896-w
M.D. Mohammadi, F. Abbas, H. Louis, L.E. Afahanam and T.E. Gber, ChemistrySelect, 7, e202202535 (2022); https://doi.org/10.1002/slct.202202535
T.E. Gber, H. Louis, A.E. Owen, B.E. Etinwa, I. Benjamin, F.C. Asogwa, M.M. Orosun and E.A. Eno, RSC Adv., 12, 25992 (2022); https://doi.org/10.1039/D2RA04028J
J.A. Agwupuye, H. Louis, O.C. Enudi, T.O. Unimuke and M.M. Edim, Mater. Chem. Phys., 275, 125239 (2022); https://doi.org/10.1016/j.matchemphys.2021.125239
A. El-Rayyes, R. T. Mogharbel, M. H. Abdel-Rhman, M. A. Ismail and E. Abdel-Latif, Bull. Chem. Soc. Ethiop., 37, 1275 (2023); https://doi.org/10.4314/bcse.v37i5.18
J.P. Wagner and P.R. Schreiner, Angew. Chem. Int. Ed., 54, 12274 (2015); https://doi.org/10.1002/anie.201503476
P. Csermely, T. Korcsmáros, H.J. Kiss, G. London and R. Nussinov, Pharmacol. Ther., 138, 333 (2013); https://doi.org/10.1016/j.pharmthera.2013.01.016
N.A. Dashatan, M.R. Tavirani, H. Zali, M. Koushki and N. Ahmadi, Galen Med. J., 7, e1129 (2018); https://doi.org/10.31661/gmj.v7i0.1129
Y. Riadi, M.H. Geesi, S.A. Ejaz, O. Afzal and A. Oubella, J. Mol. Struct., 1322, 140420 (2025); https://doi.org/10.1016/j.molstruc.2024.140420
M. Aziz, S.A. Ejaz, N. Tamam, F. Siddique, N. Riaz, F.A. Qais, S. Chtita and J. Iqbal, Sci. Rep., 12, 6404 (2022); https://doi.org/10.1038/s41598-022-10253-5
J. Porter, S. Lumb, F. Lecomte, J. Reuberson, A. Foley, M. Calmiano, K. le Riche, H. Edwards, J. Delgado, R.J. Franklin, J.M. Gascon-Simorte, A. Maloney, C. Meier and M. Batchelor, Bioorg. Med. Chem. Lett., 19, 397 (2009); https://doi.org/10.1016/j.bmcl.2008.11.062
Y. Amano, T. Yamaguchi, T. Niimi and H. Sakashita, Acta Crystallogr. D Biol. Crystallogr., 71, 918 (2015); https://doi.org/10.1107/S1399004715002175
W. Qiu, M. Zhou, F. Labrie and S.X. Lin, Mol. Endocrinol., 18, 1798 (2004); https://doi.org/10.1210/me.2004-0032
M. Zhang, Y. Zhang, M. Song, X. Xue, J. Wang, C. Wang, C. Zhang, C. Li, Q. Xiang, L. Zou, X. Wu, C. Wu, B. Dong, W. Xue, Y. Zhou, H. Chen, D. Wu, K. Ding and Y. Xu, J. Med. Chem., 61, 3037 (2018); https://doi.org/10.1021/acs.jmedchem.8b00103
A. Kosiha, K.M. Lo, C. Parthiban and K.P. Elango, Mater. Sci. Eng. C, 94, 778 (2019); https://doi.org/10.1016/j.msec.2018.10.021
L. Ozalp, S.S. Erdem, B. Yüce-Dursun, Ö. Mutlu and M. Özbil, Comput. Biol. Chem., 77, 87 (2018); https://doi.org/10.1016/j.compbiolchem.2018.09.009
S.H. Abdullahi, A. Uzairu, G.A. Shallangwa, S. Uba and A.B. Umar, Chemistry Africa, 6, 1381 (2023); https://doi.org/10.1007/s42250-023-00592-9
A. Ahmed, A. Saeed, S.A. Ejaz, M. Aziz, M.Z. Hashmi, P.A. Channar, Q. Abbas, H. Raza, Z. Shafiq and H.R. El-Seedi, RSC Advances, 12, 11974 (2022); https://doi.org/10.1039/D1RA09318E