Copyright (c) 2025 ANJU ROSE PUTHUKKARA P, SUNIL JOSE T, DINOOP LAL S

This work is licensed under a Creative Commons Attribution 4.0 International License.
TiO2-Zeolite Composite Modified Iron Nanoparticles for the Removal of Cr(VI) from Wastewater
Corresponding Author(s) : T. Sunil Jose
Asian Journal of Chemistry,
Vol. 37 No. 3 (2025): Vol 37 Issue 3, 2025
Abstract
Zero valent iron (Fe0) particles are significant in wastewater treatment because of their high reactivity, rapid kinetics, magnetic characteristics, and eco-friendliness. The primary drawbacks of Fe0 nanoparticles are their rapid oxidation and aggregation. In this study, novel TiO2-zeolite composites with different percentages of TiO2 were prepared and applied for Fe0 stabilization. The TiO2-zeolite composite was synthesized using the sonication of components, subsequently employing the hydrothermal technique. Iron nanoparticles were included into the TiO2-zeolite composite using the wet impregnation method followed by liquid-phase reduction. For comparative study with TiO2-zeolite-Fe nanoparticles, TiO2-Fe and zeolite-Fe nanoparticles were also prepared. The characterization of TiO2 and zeolite modified Fe nanoparticles were done by XRD, HRTEM, EDAX, FTIR and UV-visible spectroscopic techniques. The study evaluated the efficiency of prepared TiO2-Fe, zeolite-Fe and TiO2-zeolite-Fe nanoparticles to remove Cr(VI) from wastewater.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Shanaghi, A.R. Sabour, T. Shahrabi and M. Aliofkhazraee, Prot. Met. Phys. Chem. Surf., 45, 305 (2009); https://doi.org/10.1134/S2070205109030071
- W. Zhang, L. Zou and L. Wang, Appl. Catal. A Gen., 371, 1 (2009); https://doi.org/10.1016/j.apcata.2009.09.038
- M. Abbas, J. Water Reuse Desalin., 10, 251 (2020); https://doi.org/10.2166/wrd.2020.038
- S.Y. Lee and S.J. Park, J. Ind. Eng. Chem., 19, 1761 (2013); https://doi.org/10.1016/j.jiec.2013.07.012
- S. Riaz and S.J. Park, J. Ind. Eng. Chem., 84, 23 (2020); https://doi.org/10.1016/j.jiec.2019.12.021
- E.A. Serna-Galvis, J. Silva-Agredo, A.L. Giraldo, O.A. Flórez and R.A. Torres-Palma, Chem. Eng. J., 284, 953 (2016); https://doi.org/10.1016/j.cej.2015.08.154
- J. Zhang, C. Yang, S. Li, Y. Xi, C. Cai, W. Liu, D. Golosov, S. Zavadski and S. Melnikov, Nanomaterials, 10, 2107 (2020); https://doi.org/10.3390/nano10112107
- Y. Yalçin, M. Kiliç and Z. Çinar, Appl. Catal. B: Environ., 99, 469 (2010); https://doi.org/10.1016/j.apcatb.2010.05.013
- M. Xing, J. Zhang and F. Chen, J. Phys. Chem. C, 113, 12848 (2009); https://doi.org/10.1021/jp9034166
- H. Khan and I.K. Swati, Ind. Eng. Chem. Res., 55, 6619 (2016); https://doi.org/10.1021/acs.iecr.6b01104
- E. Petala, M. Baikousi, M.A. Karakassides, G. Zoppellaro, J. Filip, J. Tuèek, K.C. Vasilopoulos, J. Pechousek and R. Zboøil, Phys. Chem. Chem. Phys., 18, 10637 (2016); https://doi.org/10.1039/C6CP01013J
- S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.O. Ajala and A.K. Mohammed, Appl. Water Sci., 10, 49 (2020); https://doi.org/10.1007/s13201-019-1138-y
- A.H. Navidpour, B. Xu, M.B. Ahmed and J.L. Zhou, Mater. Sci. Semicond. Process., 179, 108518 (2024); https://doi.org/10.1016/j.mssp.2024.108518
- J. Huang, S. Yi, C. Zheng and I.M.C. Lo, Sci. Total Environ., 684, 351 (2019); https://doi.org/10.1016/j.scitotenv.2019.05.331
- Q. Sun, X. Hu, S. Zheng, Z. Sun, S. Liu and H. Li, Powder Technol., 274, 88 (2015); https://doi.org/10.1016/j.powtec.2014.12.052
- Y.H. Jan, L.Y. Lin, M. Karthik and H. Bai, J. Air Waste Manag. Assoc., 59, 1186 (2009); https://doi.org/10.3155/1047-3289.59.10.1186
- D. Mirzaei, A. Zabardasti, Y. Mansourpanah, M. Sadeghi and S. Farhadi, J. Inorg. Organomet. Polym. Mater., 30, 2067 (2020); https://doi.org/10.1007/s10904-019-01369-9
- K. Kusdianto, M. Hudandini, D. Jiang, M. Kubo and M. Shimada, Catalysts, 12, 17 (2021); https://doi.org/10.3390/catal12010017
- S.M. Baghbanian, RSC Adv., 4, 59397 (2014); https://doi.org/10.1039/C4RA10537K
- A. Kalantarifard, J.G. Gon and G.S. Yang, Terr. Atmos. Ocean. Sci., 27, 865 (2016); https://doi.org/10.3319/TAO.2016.05.28.01(TT)
- W. Gao, D. Zhong, Y. Xu, H. Luo and S. Zeng, J. Dispers. Sci. Technol., 43, 1197 (2020); https://doi.org/10.1080/01932691.2020.1848583
- Y. Sun, B. Yang, Y. Tian, G. Guo, W. Cai, M. He and Y. Liu, Micro & Nano Lett., 6, 82 (2011); https://doi.org/10.1049/mnl.2010.0149
- S. Sood, A. Umar, S.K. Mehta and S.K. Kansal, J. Colloid Interface Sci., 450, 213 (2015); https://doi.org/10.1016/j.jcis.2015.03.018
- G. Zhang, A. Song, Y. Duan and S. Zheng, Micropor. Mesopor. Mater., 255, 61 (2018); https://doi.org/10.1016/j.micromeso.2017.07.028
- S. Bagheri, K. Shameli and S.B. Abd Hamid, J. Chem., 2013, 848205 (2013); https://doi.org/10.1155/2013/848205
- Y. Rashtbari, J.H.P. Américo-Pinheiro, S. Bahrami, M. Fazlzadeh, H. Arfaeinia and Y. Poureshgh, Water Air Soil Pollut., 231, 514 (2020); https://doi.org/10.1007/s11270-020-04872-9
- Y. Song, X. Lu, Z. Liu, W. Liu, L. Gai, X. Gao and H. Ma, Nanomaterials, 12, 291 (2022); https://doi.org/10.3390/nano12020291
References
A. Shanaghi, A.R. Sabour, T. Shahrabi and M. Aliofkhazraee, Prot. Met. Phys. Chem. Surf., 45, 305 (2009); https://doi.org/10.1134/S2070205109030071
W. Zhang, L. Zou and L. Wang, Appl. Catal. A Gen., 371, 1 (2009); https://doi.org/10.1016/j.apcata.2009.09.038
M. Abbas, J. Water Reuse Desalin., 10, 251 (2020); https://doi.org/10.2166/wrd.2020.038
S.Y. Lee and S.J. Park, J. Ind. Eng. Chem., 19, 1761 (2013); https://doi.org/10.1016/j.jiec.2013.07.012
S. Riaz and S.J. Park, J. Ind. Eng. Chem., 84, 23 (2020); https://doi.org/10.1016/j.jiec.2019.12.021
E.A. Serna-Galvis, J. Silva-Agredo, A.L. Giraldo, O.A. Flórez and R.A. Torres-Palma, Chem. Eng. J., 284, 953 (2016); https://doi.org/10.1016/j.cej.2015.08.154
J. Zhang, C. Yang, S. Li, Y. Xi, C. Cai, W. Liu, D. Golosov, S. Zavadski and S. Melnikov, Nanomaterials, 10, 2107 (2020); https://doi.org/10.3390/nano10112107
Y. Yalçin, M. Kiliç and Z. Çinar, Appl. Catal. B: Environ., 99, 469 (2010); https://doi.org/10.1016/j.apcatb.2010.05.013
M. Xing, J. Zhang and F. Chen, J. Phys. Chem. C, 113, 12848 (2009); https://doi.org/10.1021/jp9034166
H. Khan and I.K. Swati, Ind. Eng. Chem. Res., 55, 6619 (2016); https://doi.org/10.1021/acs.iecr.6b01104
E. Petala, M. Baikousi, M.A. Karakassides, G. Zoppellaro, J. Filip, J. Tuèek, K.C. Vasilopoulos, J. Pechousek and R. Zboøil, Phys. Chem. Chem. Phys., 18, 10637 (2016); https://doi.org/10.1039/C6CP01013J
S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.O. Ajala and A.K. Mohammed, Appl. Water Sci., 10, 49 (2020); https://doi.org/10.1007/s13201-019-1138-y
A.H. Navidpour, B. Xu, M.B. Ahmed and J.L. Zhou, Mater. Sci. Semicond. Process., 179, 108518 (2024); https://doi.org/10.1016/j.mssp.2024.108518
J. Huang, S. Yi, C. Zheng and I.M.C. Lo, Sci. Total Environ., 684, 351 (2019); https://doi.org/10.1016/j.scitotenv.2019.05.331
Q. Sun, X. Hu, S. Zheng, Z. Sun, S. Liu and H. Li, Powder Technol., 274, 88 (2015); https://doi.org/10.1016/j.powtec.2014.12.052
Y.H. Jan, L.Y. Lin, M. Karthik and H. Bai, J. Air Waste Manag. Assoc., 59, 1186 (2009); https://doi.org/10.3155/1047-3289.59.10.1186
D. Mirzaei, A. Zabardasti, Y. Mansourpanah, M. Sadeghi and S. Farhadi, J. Inorg. Organomet. Polym. Mater., 30, 2067 (2020); https://doi.org/10.1007/s10904-019-01369-9
K. Kusdianto, M. Hudandini, D. Jiang, M. Kubo and M. Shimada, Catalysts, 12, 17 (2021); https://doi.org/10.3390/catal12010017
S.M. Baghbanian, RSC Adv., 4, 59397 (2014); https://doi.org/10.1039/C4RA10537K
A. Kalantarifard, J.G. Gon and G.S. Yang, Terr. Atmos. Ocean. Sci., 27, 865 (2016); https://doi.org/10.3319/TAO.2016.05.28.01(TT)
W. Gao, D. Zhong, Y. Xu, H. Luo and S. Zeng, J. Dispers. Sci. Technol., 43, 1197 (2020); https://doi.org/10.1080/01932691.2020.1848583
Y. Sun, B. Yang, Y. Tian, G. Guo, W. Cai, M. He and Y. Liu, Micro & Nano Lett., 6, 82 (2011); https://doi.org/10.1049/mnl.2010.0149
S. Sood, A. Umar, S.K. Mehta and S.K. Kansal, J. Colloid Interface Sci., 450, 213 (2015); https://doi.org/10.1016/j.jcis.2015.03.018
G. Zhang, A. Song, Y. Duan and S. Zheng, Micropor. Mesopor. Mater., 255, 61 (2018); https://doi.org/10.1016/j.micromeso.2017.07.028
S. Bagheri, K. Shameli and S.B. Abd Hamid, J. Chem., 2013, 848205 (2013); https://doi.org/10.1155/2013/848205
Y. Rashtbari, J.H.P. Américo-Pinheiro, S. Bahrami, M. Fazlzadeh, H. Arfaeinia and Y. Poureshgh, Water Air Soil Pollut., 231, 514 (2020); https://doi.org/10.1007/s11270-020-04872-9
Y. Song, X. Lu, Z. Liu, W. Liu, L. Gai, X. Gao and H. Ma, Nanomaterials, 12, 291 (2022); https://doi.org/10.3390/nano12020291