Copyright (c) 2025 G. AMEER BASHA , C. V. KRISHNA REDDY, LINGALA ESWARADITYA REDDY, GAURAV MAHNOT JAIN, DHRUV GOLLAPUDI, I. BALAKRISHNA, Gubbala V. Ramesh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural, Magnetic and Antimicrobial Performance of Hydrothermally Synthesized Mg-Zn Ferrite Nanoparticles
Corresponding Author(s) : Gubbala V. Ramesh
Asian Journal of Chemistry,
Vol. 37 No. 3 (2025): Vol 37 Issue 3, 2025
Abstract
This study investigated the structural, magnetic and antibacterial properties of magnesium-zinc ferrite (Mg-Zn ferrite) nanoparticles, which were synthesized through hydrothermal method. The analysis revealed that the lattice parameters and crystallite sizes diminished as zinc content increased, showing a reduction from 36.6 nm for MgFe2O4 to 22.17 nm for ZnFe2FeO4, as determined through X-ray diffraction (XRD). An increased level of Zn substitution led to greater lattice strain and enhanced cation exchange, as evidenced by Raman spectrum. Magnetic studies revealed that the ideal cation configuration was Mg0.5Zn0.5Fe2O4, with a peak saturation magnetization of 28.53 emu/g. The antibacterial results showed that the zinc-rich samples were efficient against both Candida albicans and Gram-positive bacteria, specifically Staphylococcus aureus. This phenomenon was linked to an increase in reactive oxygen species (ROS) production and the liberation of Zn2+ ions into the adjacent environment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.J. Salih and W.M. Mahmood, Heliyon, 9, e16601 (2023); https://doi.org/10.1016/j.heliyon.2023.e16601
- Y. Zhang, X. Feng, Z. Zheng, Z. Zhang, K. Lin, X. Sun, G. Wang, J. Wang, J. Wei, P. Vallobra, Y. He, Z. Wang, L. Chen, K. Zhang, Y. Xu and W. Zhao, Appl. Phys. Rev., 10, 011301 (2023); https://doi.org/10.1063/5.0104618
- K.R. Sanchez-Lievanos, J.L. Stair and K.E. Knowles, Inorg. Chem., 60, 4291 (2021); https://doi.org/10.1021/acs.inorgchem.1c00040
- D. Carta, M.F. Casula, A. Falqui, G. Mountjoy, C. Sangregorio, D. Loche and A. Corrias, J. Phys. Chem. C, 113, 8606 (2009); https://doi.org/10.1021/jp901077c
- M. Ramazanov, A. Karimova and H. Shirinova, Biointerf. Res. Appl. Chem., 11, 8654 (2020); https://doi.org/10.33263/BRIAC112.86548668
- N. Matsubara, T. Masese, E. Suard, O.K. Forslund, E. Nocerino, R. Palm, Z. Guguchia, D. Andreica, A. Hardut, M. Ishikado, K. Papadopoulos, Y. Sassa and M. Månsson, Inorg. Chem., 59, 17970 (2020); https://doi.org/10.1021/acs.inorgchem.0c02241
- H.L. Andersen, C. Granados-Miralles, K.M.Ø. Jensen and M. Saura-Múzquiz and M. Christensen, ACS Nano, 18, 9852 (2024); https://doi.org/10.1021/acsnano.3c08772
- N. Torres-Gómez, O. Nava, L. Argueta-Figueroa, R. García-Contreras, A. Baeza-Barrera and A.R. Vilchis-Nestor, J. Nanomater., 2019, 7921273 (2019); https://doi.org/10.1155/2019/7921273
- N. Yahya, A.S.M. Aripin, A.A. Aziz, H. Daud, H.M. Zaid, L.K. Pah and N. Maarof, Am. J. Eng. Appl. Sci., 1, 53 (2008); https://doi.org/10.3844/ajeassp.2008.53.56
- A. Rabbani, R. Haghniaz, T. Khan, R. Khan, A. Khalid, S.S. Naz, M. Ul-Islam, F. Vajhadin and F. Wahid, RSC Adv., 11, 1773 (2021); https://doi.org/10.1039/D0RA08417D
- K.K. Kefeni, T.A.M. Msagati, T.TI. Nkambule and B.B. Mamba, Mater. Sci. Eng. C, 107, 110314 (2020); https://doi.org/10.1016/j.msec.2019.110314
- A.A. Abdelrahman, A.S.A. Raboh, M.M. Ismail, H.H. El-Bahnasawy and D.A. Rayan, Appl. Phys. A, 130, 682 (2024); https://doi.org/10.1007/s00339-024-07794-z
- M.E. Hiti, A.I.E. Shora and S.M. Hammad, Mater. Sci. Technol., 13, 625 (1997); https://doi.org/10.1179/mst.1997.13.8.625
- A. Henaish, Arab J. Nuclear Sci. Appl., 0, 0 (2019); https://doi.org/10.21608/ajnsa.2019.11102.1195
- M.A. Darwish, M.M. Hussein, S.A. Saafan, W. Abd-Elaziem, D. Zhou, M.V. Silibin, S.V. Trukhanov, N.V. Abmiotka, M.I. Sayyed, D.I. Tishkevich and A.V. Trukhanov, J. Alloys Compd., 968, 172278 (2023); https://doi.org/10.1016/j.jallcom.2023.172278
- K.A. Khalaf, Adv. Mater., 8, 70 (2019); https://doi.org/10.11648/j.am.20190802.15
- H. Saqib, S. Rahman, R. Susilo, B. Chen and N. Dai, AIP Adv., 9, 055306 (2019); https://doi.org/10.1063/1.5093221
- A.M. Padhan, S. Nayak, M. Sahu, Z. Jaglièic, P. Koželj and H.J. Kim, Physica B, 668, 415245 (2023); https://doi.org/10.1016/j.physb.2023.415245
- P. Kumar, J. Asokan, S. Sriram, M.C. Ramkumar, P.S. Kumar and M.G. Shalini, J. Hazard. Mater. Adv., 17, 100594 (2025); https://doi.org/10.1016/j.hazadv.2025.100594
- C.A. Palacio Gómez, C.A. Barrero Meneses and J.A. Jaén, J. Magn. Magn. Mater., 505, 166710 (2020); https://doi.org/10.1016/j.jmmm.2020.166710
- B.K. Ostafijchuk, V.S. Bushkova, V.V. Moklyak and R.V. Lnitsky, Ukrainian J. Phys., 60, 1234 (2015); https://doi.org/10.15407/ujpe60.12.1234
- A. Ghosh, M. Satalkar, S. Rathod, S.P. Nag, P. Vyas, N. Kane, N. Ghodke, R. Prasad and R. Dwivedi, Int. J. Mod. Phys. Conf. Ser., 22, 28 (2013); https://doi.org/10.1142/S2010194513009896
- B. Gottenbos, D.W. Grijpma, H.C. Van Der Mei, J. Feijen and H.J. Busscher, J. Antimicrob. Chemother., 48, 7 (2001); https://doi.org/10.1093/jac/48.1.7
- R. Kügler, O. Bouloussa and F. Rondelez, Microbiology, 151, 1341 (2005); https://doi.org/10.1099/mic.0.27526-0
References
S.J. Salih and W.M. Mahmood, Heliyon, 9, e16601 (2023); https://doi.org/10.1016/j.heliyon.2023.e16601
Y. Zhang, X. Feng, Z. Zheng, Z. Zhang, K. Lin, X. Sun, G. Wang, J. Wang, J. Wei, P. Vallobra, Y. He, Z. Wang, L. Chen, K. Zhang, Y. Xu and W. Zhao, Appl. Phys. Rev., 10, 011301 (2023); https://doi.org/10.1063/5.0104618
K.R. Sanchez-Lievanos, J.L. Stair and K.E. Knowles, Inorg. Chem., 60, 4291 (2021); https://doi.org/10.1021/acs.inorgchem.1c00040
D. Carta, M.F. Casula, A. Falqui, G. Mountjoy, C. Sangregorio, D. Loche and A. Corrias, J. Phys. Chem. C, 113, 8606 (2009); https://doi.org/10.1021/jp901077c
M. Ramazanov, A. Karimova and H. Shirinova, Biointerf. Res. Appl. Chem., 11, 8654 (2020); https://doi.org/10.33263/BRIAC112.86548668
N. Matsubara, T. Masese, E. Suard, O.K. Forslund, E. Nocerino, R. Palm, Z. Guguchia, D. Andreica, A. Hardut, M. Ishikado, K. Papadopoulos, Y. Sassa and M. Månsson, Inorg. Chem., 59, 17970 (2020); https://doi.org/10.1021/acs.inorgchem.0c02241
H.L. Andersen, C. Granados-Miralles, K.M.Ø. Jensen and M. Saura-Múzquiz and M. Christensen, ACS Nano, 18, 9852 (2024); https://doi.org/10.1021/acsnano.3c08772
N. Torres-Gómez, O. Nava, L. Argueta-Figueroa, R. García-Contreras, A. Baeza-Barrera and A.R. Vilchis-Nestor, J. Nanomater., 2019, 7921273 (2019); https://doi.org/10.1155/2019/7921273
N. Yahya, A.S.M. Aripin, A.A. Aziz, H. Daud, H.M. Zaid, L.K. Pah and N. Maarof, Am. J. Eng. Appl. Sci., 1, 53 (2008); https://doi.org/10.3844/ajeassp.2008.53.56
A. Rabbani, R. Haghniaz, T. Khan, R. Khan, A. Khalid, S.S. Naz, M. Ul-Islam, F. Vajhadin and F. Wahid, RSC Adv., 11, 1773 (2021); https://doi.org/10.1039/D0RA08417D
K.K. Kefeni, T.A.M. Msagati, T.TI. Nkambule and B.B. Mamba, Mater. Sci. Eng. C, 107, 110314 (2020); https://doi.org/10.1016/j.msec.2019.110314
A.A. Abdelrahman, A.S.A. Raboh, M.M. Ismail, H.H. El-Bahnasawy and D.A. Rayan, Appl. Phys. A, 130, 682 (2024); https://doi.org/10.1007/s00339-024-07794-z
M.E. Hiti, A.I.E. Shora and S.M. Hammad, Mater. Sci. Technol., 13, 625 (1997); https://doi.org/10.1179/mst.1997.13.8.625
A. Henaish, Arab J. Nuclear Sci. Appl., 0, 0 (2019); https://doi.org/10.21608/ajnsa.2019.11102.1195
M.A. Darwish, M.M. Hussein, S.A. Saafan, W. Abd-Elaziem, D. Zhou, M.V. Silibin, S.V. Trukhanov, N.V. Abmiotka, M.I. Sayyed, D.I. Tishkevich and A.V. Trukhanov, J. Alloys Compd., 968, 172278 (2023); https://doi.org/10.1016/j.jallcom.2023.172278
K.A. Khalaf, Adv. Mater., 8, 70 (2019); https://doi.org/10.11648/j.am.20190802.15
H. Saqib, S. Rahman, R. Susilo, B. Chen and N. Dai, AIP Adv., 9, 055306 (2019); https://doi.org/10.1063/1.5093221
A.M. Padhan, S. Nayak, M. Sahu, Z. Jaglièic, P. Koželj and H.J. Kim, Physica B, 668, 415245 (2023); https://doi.org/10.1016/j.physb.2023.415245
P. Kumar, J. Asokan, S. Sriram, M.C. Ramkumar, P.S. Kumar and M.G. Shalini, J. Hazard. Mater. Adv., 17, 100594 (2025); https://doi.org/10.1016/j.hazadv.2025.100594
C.A. Palacio Gómez, C.A. Barrero Meneses and J.A. Jaén, J. Magn. Magn. Mater., 505, 166710 (2020); https://doi.org/10.1016/j.jmmm.2020.166710
B.K. Ostafijchuk, V.S. Bushkova, V.V. Moklyak and R.V. Lnitsky, Ukrainian J. Phys., 60, 1234 (2015); https://doi.org/10.15407/ujpe60.12.1234
A. Ghosh, M. Satalkar, S. Rathod, S.P. Nag, P. Vyas, N. Kane, N. Ghodke, R. Prasad and R. Dwivedi, Int. J. Mod. Phys. Conf. Ser., 22, 28 (2013); https://doi.org/10.1142/S2010194513009896
B. Gottenbos, D.W. Grijpma, H.C. Van Der Mei, J. Feijen and H.J. Busscher, J. Antimicrob. Chemother., 48, 7 (2001); https://doi.org/10.1093/jac/48.1.7
R. Kügler, O. Bouloussa and F. Rondelez, Microbiology, 151, 1341 (2005); https://doi.org/10.1099/mic.0.27526-0