Copyright (c) 2025 Maroti Sudewad, Sachin Yeole, Mahesh Jadhav, Santosh Kathwate, Rahul More, Kundan Chandramani Tayade Tayade

This work is licensed under a Creative Commons Attribution 4.0 International License.
Biological Activities and Docking Simulation of Newer Dipodal Benzopyrazines based Azine Scaffold
Corresponding Author(s) : Kundan Tayade
Asian Journal of Chemistry,
Vol. 37 No. 3 (2025): Vol 37 Issue 3, 2025
Abstract
In this study, novel benzopyrazine-based motif 2-((2,3-bis(4-bromophenyl)quinoxalin-6-yl)(phenyl)-methylene)-1-((2,3-bis(4-bromophenyl)-quinoxalin-7-yl)(phenyl)methylene)hydrazine (compound 2) was synthesized and characterized. Among the tested microbes, compound 2 has demonstrated potent activity against the bacterial strains B. subtilis and B. megaterium (with MICs of 31.25 and 15.62, respectively), as well as the fungal strains R. oryzae, P. chrysogenum and A. niger (with MICs of 31.25, 62.5 and 62.5, respectively). Compound 2 (1 mg/mL) was also found to be a potent DPPH-reducing agent as compared to ascorbic acid. In vitro hemolytic assay revealed negligible activity (within 5% permissible limit) as compared to positive control Triton-X 100. Molecular docking studies indicated that compound 2 binds to the GyrB ATP-binding site through hydrogen bonds, hydrophobic interactions, and π-cation interactions, demonstrating favourable in silico interaction energy scores. Exploration of DFT shows that HOMO & LUMO are mainly located around the benzene rings and nitrogen atoms rather than bromine.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.M. Heravi and V. Zadsirjan, RSC Adv., 10, 44247 (2020); https://doi.org/10.1039/d0ra09198g
- A.R. Katritzky and B.V. Rogovoy, Chem. Eur. J., 9, 4586 (2003); https://doi.org/10.1002/chem.200304990
- J. Rock, D. Garcia, O. Espino, S.A. Shetu, M.J. Chan-Bacab, R. Moo-Puc, N.B. Patel, G. Rivera and D. Bandyopadhyay, Front. Chem., 9, 725892 (2021); https://doi.org/10.3389/fchem.2021.725892
- V. Montero, M. Montana, M. Carré and P. Vanelle, Eur. J. Med. Chem., 271, 116360 (2024); https://doi.org/10.1016/j.ejmech.2024.116360
- M. Tristán-Manzano, A. Guirado, M. Martínez-Esparza, J. Gálvez, P. García-Peñarrubia and A.J. Ruiz-Alcaraz, Curr. Med. Chem., 22, 3075 (2015); https://doi.org/10.2174/0929867322666150812144104
- I. Briguglio, S. Piras, P. Corona, E. Gavini, M. Nieddu, G. Boatto and A. Carta, Eur. J. Med. Chem., 97, 612 (2015); https://doi.org/10.1016/j.ejmech.2014.09.089
- M.F. Zayed, Chemistry, 5, 2566 (2023); https://doi.org/10.3390/chemistry5040166
- J. Yuan, J. Ouyang, V. Cimrová, M. Leclerc, A. Najari and Y. Zou, J. Mater. Chem. C Mater. Opt. Electron. Devices, 5, 1858 (2017); https://doi.org/10.1039/C6TC05381E
- J.-Y. Jaung, Dyes Pigments, 71, 245 (2006); https://doi.org/10.1016/j.dyepig.2005.07.008
- M.B. Desta, N.S. Vinh, C. Pavan Kumar, S. Chaurasia, W.T. Wu, J.T. Lin, T.C. Wei and E.W.-G. Diau, J. Mater. Chem. A, 6, 13778 (2018); https://doi.org/10.1039/C8TA04774J
- M.L. Jiang, J.J. Wen, Z.M. Chen, W.H. Tsai, T.C. Lin, T.J. Chow and Y.J. Chang, ChemSusChem, 12, 3654 (2019); https://doi.org/10.1002/cssc.201900505
- O.O. Ajani, Eur. J. Med. Chem., 85, 688 (2014); https://doi.org/10.1016/j.ejmech.2014.08.034
- N. Malpathak and S. Baikar, Pharmacogn. Rev., 4, 12 (2010); https://doi.org/10.4103/0973-7847.65320
- J. Hirsch and D. Klostermeier, Nucleic Acids Res., 49, 6027 (2021); https://doi.org/10.1093/nar/gkab270
- K. Tayade, G.-S. Yeom, S.K. Sahoo, H. Puschmann, S.B. Nimse and A. Kuwar, Antioxidants, 11, 2138 (2022); https://doi.org/10.3390/antiox11112138
- D.N. Kanekar, S. Chacko and R.M. Kamble, Dyes Pigments, 167, 36 (2019); https://doi.org/10.1016/j.dyepig.2019.04.005
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, T.A. Keith, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian, Inc., Wallingford CT, Gaussian 16, Revision C.01 (2016).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- R.A. More, G.B. Sanap, M.A. Karale, Y.P. Sarnikar and R.N. Gacche, Indian J. Public Health Res. Dev., 11, 607 (2020); https://doi.org/10.37506/ijphrd.v11i6.9848
- K.B. Gangurde, R.A. More, V.A. Adole, D.S. Ghotekar, Results Chem., 7, 101380 (2024); https://doi.org/10.1016/j.rechem.2024.101380
- G. Mandawad, R. Kamble, S. Hese, R. More, R. Gacche, K. Kodam and B. Dawane, Med. Chem. Res., 23, 4455 (2014); https://doi.org/10.1007/s00044-014-1016-y
- R.K. Jadhav, S.S. Mahurkar, R.A. More and D.R. Munde, J. Synth. Chem., 1, 116 (2022); https://doi.org/10.22034/jsc.2022.155285
- O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
- E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
- M. Brvar, A. Perdih, M. Renko, G. Anderluh, D. Turk and T. Solmajer, J. Med. Chem., 55, 6413 (2012); https://doi.org/10.1021/jm300395d
- D. Lafitte, V. Lamour, P.O. Tsvetkov, A.A. Makarov, M. Klich, P. Deprez, D. Moras, C. Briand and R. Gilli, Biochemistry, 41, 7217 (2002); https://doi.org/10.1021/bi0159837
- G.A. Holdgate, A. Tunnicliffe, W.H. Ward, S.A. Weston, G. Rosenbrock, P.T. Barth, I.W. Taylor, R.A. Pauptit and D. Timms, Biochemistry, 36, 9663 (1997); https://doi.org/10.1021/bi970294+
- R.A. Laskowski and M.B. Swindells, J. Chem. Inf. Model., 51, 2778 (2011); https://doi.org/10.1021/ci200227u
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
- N.M. Irmi, B. Purwono and C. Anwar, Indonesian Journal of Chemistry, 21, 1337 (2021); https://doi.org/10.22146/ijc.64428
- G.S. Bisacchi and J.I. Manchester, ACS Infect. Dis., 1, 4 (2015); https://doi.org/10.1021/id500013t
- C.N. Pace, H. Fu, K.L. Fryar, J. Landua, S.R. Trevino, B.A. Shirley, M.M. Hendricks, S. Iimura, K. Gajiwala, J.M. Scholtz and G.R. Grimsley, J. Mol. Biol., 408, 514 (2011); https://doi.org/10.1016/j.jmb.2011.02.053
References
M.M. Heravi and V. Zadsirjan, RSC Adv., 10, 44247 (2020); https://doi.org/10.1039/d0ra09198g
A.R. Katritzky and B.V. Rogovoy, Chem. Eur. J., 9, 4586 (2003); https://doi.org/10.1002/chem.200304990
J. Rock, D. Garcia, O. Espino, S.A. Shetu, M.J. Chan-Bacab, R. Moo-Puc, N.B. Patel, G. Rivera and D. Bandyopadhyay, Front. Chem., 9, 725892 (2021); https://doi.org/10.3389/fchem.2021.725892
V. Montero, M. Montana, M. Carré and P. Vanelle, Eur. J. Med. Chem., 271, 116360 (2024); https://doi.org/10.1016/j.ejmech.2024.116360
M. Tristán-Manzano, A. Guirado, M. Martínez-Esparza, J. Gálvez, P. García-Peñarrubia and A.J. Ruiz-Alcaraz, Curr. Med. Chem., 22, 3075 (2015); https://doi.org/10.2174/0929867322666150812144104
I. Briguglio, S. Piras, P. Corona, E. Gavini, M. Nieddu, G. Boatto and A. Carta, Eur. J. Med. Chem., 97, 612 (2015); https://doi.org/10.1016/j.ejmech.2014.09.089
M.F. Zayed, Chemistry, 5, 2566 (2023); https://doi.org/10.3390/chemistry5040166
J. Yuan, J. Ouyang, V. Cimrová, M. Leclerc, A. Najari and Y. Zou, J. Mater. Chem. C Mater. Opt. Electron. Devices, 5, 1858 (2017); https://doi.org/10.1039/C6TC05381E
J.-Y. Jaung, Dyes Pigments, 71, 245 (2006); https://doi.org/10.1016/j.dyepig.2005.07.008
M.B. Desta, N.S. Vinh, C. Pavan Kumar, S. Chaurasia, W.T. Wu, J.T. Lin, T.C. Wei and E.W.-G. Diau, J. Mater. Chem. A, 6, 13778 (2018); https://doi.org/10.1039/C8TA04774J
M.L. Jiang, J.J. Wen, Z.M. Chen, W.H. Tsai, T.C. Lin, T.J. Chow and Y.J. Chang, ChemSusChem, 12, 3654 (2019); https://doi.org/10.1002/cssc.201900505
O.O. Ajani, Eur. J. Med. Chem., 85, 688 (2014); https://doi.org/10.1016/j.ejmech.2014.08.034
N. Malpathak and S. Baikar, Pharmacogn. Rev., 4, 12 (2010); https://doi.org/10.4103/0973-7847.65320
J. Hirsch and D. Klostermeier, Nucleic Acids Res., 49, 6027 (2021); https://doi.org/10.1093/nar/gkab270
K. Tayade, G.-S. Yeom, S.K. Sahoo, H. Puschmann, S.B. Nimse and A. Kuwar, Antioxidants, 11, 2138 (2022); https://doi.org/10.3390/antiox11112138
D.N. Kanekar, S. Chacko and R.M. Kamble, Dyes Pigments, 167, 36 (2019); https://doi.org/10.1016/j.dyepig.2019.04.005
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, T.A. Keith, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian, Inc., Wallingford CT, Gaussian 16, Revision C.01 (2016).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
R.A. More, G.B. Sanap, M.A. Karale, Y.P. Sarnikar and R.N. Gacche, Indian J. Public Health Res. Dev., 11, 607 (2020); https://doi.org/10.37506/ijphrd.v11i6.9848
K.B. Gangurde, R.A. More, V.A. Adole, D.S. Ghotekar, Results Chem., 7, 101380 (2024); https://doi.org/10.1016/j.rechem.2024.101380
G. Mandawad, R. Kamble, S. Hese, R. More, R. Gacche, K. Kodam and B. Dawane, Med. Chem. Res., 23, 4455 (2014); https://doi.org/10.1007/s00044-014-1016-y
R.K. Jadhav, S.S. Mahurkar, R.A. More and D.R. Munde, J. Synth. Chem., 1, 116 (2022); https://doi.org/10.22034/jsc.2022.155285
O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
M. Brvar, A. Perdih, M. Renko, G. Anderluh, D. Turk and T. Solmajer, J. Med. Chem., 55, 6413 (2012); https://doi.org/10.1021/jm300395d
D. Lafitte, V. Lamour, P.O. Tsvetkov, A.A. Makarov, M. Klich, P. Deprez, D. Moras, C. Briand and R. Gilli, Biochemistry, 41, 7217 (2002); https://doi.org/10.1021/bi0159837
G.A. Holdgate, A. Tunnicliffe, W.H. Ward, S.A. Weston, G. Rosenbrock, P.T. Barth, I.W. Taylor, R.A. Pauptit and D. Timms, Biochemistry, 36, 9663 (1997); https://doi.org/10.1021/bi970294+
R.A. Laskowski and M.B. Swindells, J. Chem. Inf. Model., 51, 2778 (2011); https://doi.org/10.1021/ci200227u
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
N.M. Irmi, B. Purwono and C. Anwar, Indonesian Journal of Chemistry, 21, 1337 (2021); https://doi.org/10.22146/ijc.64428
G.S. Bisacchi and J.I. Manchester, ACS Infect. Dis., 1, 4 (2015); https://doi.org/10.1021/id500013t
C.N. Pace, H. Fu, K.L. Fryar, J. Landua, S.R. Trevino, B.A. Shirley, M.M. Hendricks, S. Iimura, K. Gajiwala, J.M. Scholtz and G.R. Grimsley, J. Mol. Biol., 408, 514 (2011); https://doi.org/10.1016/j.jmb.2011.02.053