Copyright (c) 2025 Ramkrishna Patle

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Cobalt(II) Complex of Polyamido-Amine (PAMAM) Decorated Azomethine Ligand: In Vitro Biological Evaluation
Corresponding Author(s) : R.Y. Patle
Asian Journal of Chemistry,
Vol. 37 No. 3 (2025): Vol 37 Issue 3, 2025
Abstract
A new cobalt(II) complex based on polyamido-amine (PAMAM) dendrimer was modified with 2-hydroxy-3-methoxybenzaldehyde. The structural elucidation of synthesized ligand and its complex were performed by the FTIR, NMR, Mass, EDX, TGA/DTA and UV-Vis analyses. The in vitro antimicrobial investigation of the synthesized complex was performed against Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli bacterial strains and fungal strain Candida albicans by well-diffusion method. The antibiotic tetracycline (10 mg/mL) for antibacterial and fluconazole antibiotic for antifungal potency were used as reference standard. The results have revealed that the PAMAMM-G0-OV-Co(II) complex has shown excellent inhibitory antibacterial action against S. aureus with highest zone of inhibition of 16 mm and E. coli with highest zone of inhibition of 21 mm at 10 mg/mL of concentration. Similarly, the complex has shown exceptional antifungal activity with average zone of inhibition of 15 mm against Candida albicans fungal strain. Thus, the dendritic cobalt complex has shown antibacterial and antifungal activity at a considerable level at 10 mg/mL concentration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Najafi, M. Salami-Kalajahi and H. Roghani-Mamaqani, J. Iran. Chem. Soc., 18, 503 (2021); https://doi.org/10.1007/s13738-020-02053-3
- R.J. Smith, C. Gorman and S. Menegatti, J. Polym. Sci., 59, 10 (2021); https://doi.org/10.1002/pol.20200721
- D.A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder and P. Smith, Polym. J., 17, 117 (1985); https://doi.org/10.1295/polymj.17.117
- S.M. Fatemi, S.J. Fatemi and Z. Abbasi, Polym. Bull., 77, 6671 (2020); https://doi.org/10.1007/s00289-019-03076-4
- A. Janaszewska, J. Lazniewska, P. Trzepiñski, M. Marcinkowska and B. Klajnert-Maculewicz, Biomolecules, 9, 330 (2019); https://doi.org/10.3390/biom9080330
- N. Shahini, F. Badalkhani-Khamseh and N.L. Hadipour, J. Mol. Liq., 399, 124396 (2024); https://doi.org/10.1016/j.molliq.2024.124396
- P.K. Tripathi and S. Tripathi, in eds.: A. Chauhan and H. Kulhari, Dend-rimers for Anticancer Drug Delivery, In: Pharmaceutical Applications of Dendrimers, Elsevier, Chap. 6, pp. pp. 131-150 (2020).
- N.T. Pourianazar, P. Mutlu and U. Gunduz, J. Nanopart. Res., 16, 2342 (2014); https://doi.org/10.1007/s11051-014-2342-1
- B.M. Johnston, A.J. Grodzinsky and P.T. Hammond, Soft Matter, 19, 3033 (2023); https://doi.org/10.1039/D2SM01698B
- K. Wu, B. Wang, B. Tang, L. Luan, W. Xu, B. Zhang and Y. Niu, Chin. Chem. Lett., 33, 2721 (2022); https://doi.org/10.1016/j.cclet.2021.08.126
- X. Zhao, S.C.J. Loo, P.P.F. Lee, T.T.Y. Tan and C.K. Chu, J. Inorg. Biochem., 104, 105 (2010); https://doi.org/10.1016/j.jinorgbio.2009.10.001
- L. Luan, B. Tang, S. Ma, L. Sun, W. Xu, A. Wang and Y. Niu, J. Mol. Liq., 330, 115634 (2021); https://doi.org/10.1016/j.molliq.2021.115634
- Y. Zhou, L. Luan, B. Tang, Y. Niu, R. Qu, Y. Liu and W. Xu, Chem. Eng. J., 398, 125651 (2020); https://doi.org/10.1016/j.cej.2020.125651
- S. Jain, M. Rana, R. Sultana, R. Mehandi and Rahisuddin, Polycycl. Aromat. Compd., 43, 6351 (2023); https://doi.org/10.1080/10406638.2022.2117210
- E. Pahontu, M. Proks, S. Shova, G. Lupascu, S.-F. Barbuceanu, L.-I. Socea, D.-C. Ilies, M. Badea, V. Paunescu, D. Istrati, D. Draganescu, A. Gulea, and C.E.D. Pîrvu, Appl. Organomet. Chem., 33, e5185 (2019); https://doi.org/10.1002/aoc.5185
- S.S. Shah, D. Shah, I. Khan, S. Ahmad, U. Ali and A.U. Rahman, Biointerface Res. Appl. Chem., 10, 6936 (2020); https://doi.org/10.33263/BRIAC106.69366963
- Q.-U.-A. Sandhu, M. Pervaiz, A. Majid, U. Younas, Z. Saeed, A. Ashraf, R.R.M. Khan, S. Ullah, F. Ali and S. Jelani, J. Coord. Chem., 76, 1094 (2023); https://doi.org/10.1080/00958972.2023.2226794
- A. Catalano, M.S. Sinicropi, D. Iacopetta, J. Ceramella, A. Mariconda, C. Rosano, E. Scali, C. Saturnino and P. Longo, Appl. Sci., 11, 6027 (2021); https://doi.org/10.3390/app11136027
- S. Kaushik, S.K. Paliwal, M.R. Iyer and V.M. Patil, Med. Chem. Res., 32, 1063 (2023); https://doi.org/10.1007/s00044-023-03068-0
- L. Lv, T. Zheng, L. Tang, Z. Wang and W. Liu, Coord. Chem. Rev., 525, 216327 (2025); https://doi.org/10.1016/j.ccr.2024.216327
- G.G. Mohamed, M.M. Omar and A.M.M. Hindy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 62, 1140 (2005); https://doi.org/10.1016/j.saa.2005.03.031
- S.A. Shaikh, S.S. Bhat, V.K. Revankar, N. S, Mahesha, N.K. Loknath and V. Kumbar, J. Coord. Chem., 76, 1586 (2023); https://doi.org/10.1080/00958972.2023.2265037
- S. Yavuz, D.A. Köse, S. Özkinali, D. Tatar and A. Veyisoglu, J. Mol. Struct., 1322, 140364 (2025); https://doi.org/10.1016/j.molstruc.2024.140364
- M. Cangiotti, D. Staneva, M.F. Ottaviani, E. Vasileva-tonkova and I. Grabchev, J. Photochem. Photobiol. Chem., 415, 113312 (2021); https://doi.org/10.1016/j.jphotochem.2021.113312
- R. Esfand and D.A. Tomalia, in eds. J.M.J. Fréchet and D.A. Tomalia, Laboratory Synthesis of Poly(amidoamine) (PAMAM) Dendrimers, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd., Chap. 25, pp. 587-604 (2001).
- C.B. Roy and J.S. Meshram, J. Lumin., 171, 208 (2016); https://doi.org/10.1016/j.jlumin.2015.10.059
- J. Wang, H. Li, L. Song, W. Shi, N. Zhang and C. Li, J. Macromol. Sci. A Pure Appl. Chem., 53, 709 (2016); https://doi.org/10.1080/10601325.2016.1224629
References
F. Najafi, M. Salami-Kalajahi and H. Roghani-Mamaqani, J. Iran. Chem. Soc., 18, 503 (2021); https://doi.org/10.1007/s13738-020-02053-3
R.J. Smith, C. Gorman and S. Menegatti, J. Polym. Sci., 59, 10 (2021); https://doi.org/10.1002/pol.20200721
D.A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder and P. Smith, Polym. J., 17, 117 (1985); https://doi.org/10.1295/polymj.17.117
S.M. Fatemi, S.J. Fatemi and Z. Abbasi, Polym. Bull., 77, 6671 (2020); https://doi.org/10.1007/s00289-019-03076-4
A. Janaszewska, J. Lazniewska, P. Trzepiñski, M. Marcinkowska and B. Klajnert-Maculewicz, Biomolecules, 9, 330 (2019); https://doi.org/10.3390/biom9080330
N. Shahini, F. Badalkhani-Khamseh and N.L. Hadipour, J. Mol. Liq., 399, 124396 (2024); https://doi.org/10.1016/j.molliq.2024.124396
P.K. Tripathi and S. Tripathi, in eds.: A. Chauhan and H. Kulhari, Dend-rimers for Anticancer Drug Delivery, In: Pharmaceutical Applications of Dendrimers, Elsevier, Chap. 6, pp. pp. 131-150 (2020).
N.T. Pourianazar, P. Mutlu and U. Gunduz, J. Nanopart. Res., 16, 2342 (2014); https://doi.org/10.1007/s11051-014-2342-1
B.M. Johnston, A.J. Grodzinsky and P.T. Hammond, Soft Matter, 19, 3033 (2023); https://doi.org/10.1039/D2SM01698B
K. Wu, B. Wang, B. Tang, L. Luan, W. Xu, B. Zhang and Y. Niu, Chin. Chem. Lett., 33, 2721 (2022); https://doi.org/10.1016/j.cclet.2021.08.126
X. Zhao, S.C.J. Loo, P.P.F. Lee, T.T.Y. Tan and C.K. Chu, J. Inorg. Biochem., 104, 105 (2010); https://doi.org/10.1016/j.jinorgbio.2009.10.001
L. Luan, B. Tang, S. Ma, L. Sun, W. Xu, A. Wang and Y. Niu, J. Mol. Liq., 330, 115634 (2021); https://doi.org/10.1016/j.molliq.2021.115634
Y. Zhou, L. Luan, B. Tang, Y. Niu, R. Qu, Y. Liu and W. Xu, Chem. Eng. J., 398, 125651 (2020); https://doi.org/10.1016/j.cej.2020.125651
S. Jain, M. Rana, R. Sultana, R. Mehandi and Rahisuddin, Polycycl. Aromat. Compd., 43, 6351 (2023); https://doi.org/10.1080/10406638.2022.2117210
E. Pahontu, M. Proks, S. Shova, G. Lupascu, S.-F. Barbuceanu, L.-I. Socea, D.-C. Ilies, M. Badea, V. Paunescu, D. Istrati, D. Draganescu, A. Gulea, and C.E.D. Pîrvu, Appl. Organomet. Chem., 33, e5185 (2019); https://doi.org/10.1002/aoc.5185
S.S. Shah, D. Shah, I. Khan, S. Ahmad, U. Ali and A.U. Rahman, Biointerface Res. Appl. Chem., 10, 6936 (2020); https://doi.org/10.33263/BRIAC106.69366963
Q.-U.-A. Sandhu, M. Pervaiz, A. Majid, U. Younas, Z. Saeed, A. Ashraf, R.R.M. Khan, S. Ullah, F. Ali and S. Jelani, J. Coord. Chem., 76, 1094 (2023); https://doi.org/10.1080/00958972.2023.2226794
A. Catalano, M.S. Sinicropi, D. Iacopetta, J. Ceramella, A. Mariconda, C. Rosano, E. Scali, C. Saturnino and P. Longo, Appl. Sci., 11, 6027 (2021); https://doi.org/10.3390/app11136027
S. Kaushik, S.K. Paliwal, M.R. Iyer and V.M. Patil, Med. Chem. Res., 32, 1063 (2023); https://doi.org/10.1007/s00044-023-03068-0
L. Lv, T. Zheng, L. Tang, Z. Wang and W. Liu, Coord. Chem. Rev., 525, 216327 (2025); https://doi.org/10.1016/j.ccr.2024.216327
G.G. Mohamed, M.M. Omar and A.M.M. Hindy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 62, 1140 (2005); https://doi.org/10.1016/j.saa.2005.03.031
S.A. Shaikh, S.S. Bhat, V.K. Revankar, N. S, Mahesha, N.K. Loknath and V. Kumbar, J. Coord. Chem., 76, 1586 (2023); https://doi.org/10.1080/00958972.2023.2265037
S. Yavuz, D.A. Köse, S. Özkinali, D. Tatar and A. Veyisoglu, J. Mol. Struct., 1322, 140364 (2025); https://doi.org/10.1016/j.molstruc.2024.140364
M. Cangiotti, D. Staneva, M.F. Ottaviani, E. Vasileva-tonkova and I. Grabchev, J. Photochem. Photobiol. Chem., 415, 113312 (2021); https://doi.org/10.1016/j.jphotochem.2021.113312
R. Esfand and D.A. Tomalia, in eds. J.M.J. Fréchet and D.A. Tomalia, Laboratory Synthesis of Poly(amidoamine) (PAMAM) Dendrimers, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd., Chap. 25, pp. 587-604 (2001).
C.B. Roy and J.S. Meshram, J. Lumin., 171, 208 (2016); https://doi.org/10.1016/j.jlumin.2015.10.059
J. Wang, H. Li, L. Song, W. Shi, N. Zhang and C. Li, J. Macromol. Sci. A Pure Appl. Chem., 53, 709 (2016); https://doi.org/10.1080/10601325.2016.1224629