Copyright (c) 2025 sharmila naykar naykar wagh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Nanogels Incorporating Tectona grandis Seed Extract for Enhanced Drug Delivery
Corresponding Author(s) : Naykar Sharmila Shashikant
Asian Journal of Chemistry,
Vol. 37 No. 3 (2025): Vol 37 Issue 3, 2025
Abstract
This research emphasizes the formulation and analysis of nanoparticles incorporated into a nanogel utilizing Tectona grandis seed extract. Silver nanoparticles (AgNPs) were synthesized using silver nitrate solution, serving as silver precursor. The resulting nanoparticles were characterized through various techniques, including particle size analysis, zeta potential measurement, energy-dispersive X-ray analysis (EDX), UV-visible spectroscopy, field emission scanning electron microscopy (FESEM), Fourier-transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). To develop the nanogel, the synthesized nanoparticles were combined with a gelling agent. The nanogel was further evaluated for parameters such as physical appearance, pH, spreadability, washability, viscosity and antibacterial activity. Among the formulations tested, batch F1 showed the highest efficacy and stability. The antimicrobial potential of the AgNPs was confirmed through the agar well diffusion method, which exhibited a 48 mm zone of inhibition against Escherichia coli. Additionally, a zone of inhibition was detected within 1 day on petri plates treated with 50 as well as 100 µg of silver nanoparticles. The nanogel was further evaluated for its wound healing activity using an excision wound model. Results demonstrated a significant reduction in wound area and improved healing rates in comparison to the control group, with batch F1 exhibiting the fastest wound closure within a specified period. The heightened wound healing potential arises from the combined belongings of the antibacterial property and therapeutic benefits of silver nanoparticles with Tectona grandis seed extract. These findings highlight the potent antibacterial and wound healing properties of Tectona grandis seed extract-loaded nanoparticles, indicating their potential as effective candidates for topical therapeutic applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Arif, A. Rauf and T. Akhter, RSC Adv., 14, 19381 (2024); https://doi.org/10.1039/D4RA02467B
- 2 S.D. Ghaywat, P.S. Mate, Y.M. Parsutkar, A.D. Chandimeshram and M.J. Umekar, GSC Biol. Pharm. Sci., 16, 40 (2021); https://doi.org/10.30574/gscbps.2021.16.1.0196
- N. Raina, R. Rani, V.K. Thakur and M. Gupta, ACS Omega, 8, 19145 (2023); https://doi.org/10.1021/acsomega.2c08016
- X. Zhang, S. Yan, R.D. Tyagi and R.Y. Surampalli, Chemosphere, 82, 489 (2011); https://doi.org/10.1016/j.chemosphere.2010.10.023
- A.V. Kabanov and S.V. Vinogradov, Nanogels as Pharmaceutical Carriers, Multifunctional Pharmaceutical Nanocarriers, Springer Science: New York, pp. 67-80 (2008).
- C. Suryakumari, M. Narender, K. Umasankar, S.P. Panda, S.N.K. Rao and S. Panda, J. Drug Deliv. Ther., 9, 110 (2019); https://doi.org/10.22270/jddt.v9i6-s.3770
- S. Gupta, J. Gupta, A. Anand and S. Ojha, Biol. Sci., 2, 269 (2022); https://doi.org/10.55006/biolsciences.2022.2304
- S.M.B. Asdaq, N. Nayeem, Abida, M.T. Alam, S.I. Alaqel, M. Imran, E.-W.E. Hassan and S.I. Rabbani, Saudi J. Biol. Sci., 29, 1456 (2021); https://doi.org/10.1016/j.sjbs.2021.11.026
- K. Manimaran, Biomass Convers. Biorefin., 14, 15011 (2024); https://doi.org/10.1007/s13399-023-04072-5
- V. Rajput, T. Minkina, M. Mazarji, S. Shende, S. Sushkova, S. Mandzhieva, M. Burachevskaya, V. Chaplygin, A. Singh and H. Jatav, Ann. Agric. Sci., 65, 137 (2020); https://doi.org/10.1016/j.aoas.2020.08.001
- J.S. Kim, S.D. Jo, G.L. Seah, I. Kim and Y.S. Nam, J. Ind. Eng. Chem., 21, 1137 (2015); https://doi.org/10.1016/j.jiec.2014.05.026
- H. Rosaini, A. Halim, I.E. Sandi, I. Makmur, R. Asra and W.M. Sidoretno, Int. Res. J. Pharm., 12, 21 (2021); https://doi.org/10.7897/2230-8407.1201112
- X. Li, W. Li, M. Wang and Z. Liao, J. Control. Release, 335, 437 (2021); https://doi.org/10.1016/j.jconrel.2021.05.042
- J. Annamalai and T. Nallamuthu, Appl. Nanosci., 6, 259 (2016); https://doi.org/10.1007/s13204-015-0426-6
- Z. Gün Gök, A. Demiral, O. Bozkaya and M. Yigitoglu, Polym. Bull., 78, 7241 (2021); https://doi.org/10.1007/s00289-020-03486-9
- A.M. Alwan, R.A. Khamis and S.M. Abdallah, Iraqi J. Sci., 26, 1274 (2019); https://doi.org/10.24996/ijs.2019.60.6.11
- Y.S. Sujitha and Y.I. Muzib, Int. J. Pharm. Investig., 10, (2020); https://doi.org/10.5530/ijpi.2020.4.87
- P. Yadav, S. Pandey and S.K. Dubey, in eds.: K.A. Abd-Elsalam, A.F. Hashim, F.K. Ahmed and S. Thomas, S. Nano-Enhanced Biopolymers for Antimicrobial Applications, In: Biopolymeric Nanoparticles for Agricultural Applications, Springer, Cham, pp. 175-208 (2024).
- Y. Fan, M. Lüchow, Y. Zhang, J. Lin, L. Fortuin, S. Mohanty, A. Brauner and M. Malkoch, Adv. Funct. Mater., 31, 2006453 (2021); https://doi.org/10.1002/adfm.202006453
- Y.P. Talekar, K.G. Apte, S.V. Paygude, P.R. Tondare and P.B. Parab, J. Ayurveda Integr. Med., 8, 73 (2017); https://doi.org/10.1016/j.jaim.2016.11.007
- J.A. Garza-Cervantes, G. Mendiola-Garza, E.M. de Melo, T.I.J. Dugmore, A.S. Matharu and J.R. Morones-Ramirez, Sci. Rep., 10, 7281 (2020); https://doi.org/10.1038/s41598-020-64127-9
- N. Hoshyar, S. Gray, H. Han and G. Bao, Nanomedicine, 11, 673 (2016); https://doi.org/10.2217/nnm.16.5
- R. Yahya and N.M. Alharbi, Int. J. Biol. Macromol., 253, 127080 (2023); https://doi.org/10.1016/j.ijbiomac.2023.127080
- A. Sharma, C. Verma, S. Mukhopadhyay, A. Gupta and B. Gupta, ACS Appl. Nano Mater., 5, 8546 (2022); https://doi.org/10.1021/acsanm.2c01959
- R. Shivhare and N. Jain, J. ReAttach Therapy Develop. Div., 6, 1825 (2023); https://doi.org/10.53555/jrtdd.v6i9s.2489
References
M. Arif, A. Rauf and T. Akhter, RSC Adv., 14, 19381 (2024); https://doi.org/10.1039/D4RA02467B
2 S.D. Ghaywat, P.S. Mate, Y.M. Parsutkar, A.D. Chandimeshram and M.J. Umekar, GSC Biol. Pharm. Sci., 16, 40 (2021); https://doi.org/10.30574/gscbps.2021.16.1.0196
N. Raina, R. Rani, V.K. Thakur and M. Gupta, ACS Omega, 8, 19145 (2023); https://doi.org/10.1021/acsomega.2c08016
X. Zhang, S. Yan, R.D. Tyagi and R.Y. Surampalli, Chemosphere, 82, 489 (2011); https://doi.org/10.1016/j.chemosphere.2010.10.023
A.V. Kabanov and S.V. Vinogradov, Nanogels as Pharmaceutical Carriers, Multifunctional Pharmaceutical Nanocarriers, Springer Science: New York, pp. 67-80 (2008).
C. Suryakumari, M. Narender, K. Umasankar, S.P. Panda, S.N.K. Rao and S. Panda, J. Drug Deliv. Ther., 9, 110 (2019); https://doi.org/10.22270/jddt.v9i6-s.3770
S. Gupta, J. Gupta, A. Anand and S. Ojha, Biol. Sci., 2, 269 (2022); https://doi.org/10.55006/biolsciences.2022.2304
S.M.B. Asdaq, N. Nayeem, Abida, M.T. Alam, S.I. Alaqel, M. Imran, E.-W.E. Hassan and S.I. Rabbani, Saudi J. Biol. Sci., 29, 1456 (2021); https://doi.org/10.1016/j.sjbs.2021.11.026
K. Manimaran, Biomass Convers. Biorefin., 14, 15011 (2024); https://doi.org/10.1007/s13399-023-04072-5
V. Rajput, T. Minkina, M. Mazarji, S. Shende, S. Sushkova, S. Mandzhieva, M. Burachevskaya, V. Chaplygin, A. Singh and H. Jatav, Ann. Agric. Sci., 65, 137 (2020); https://doi.org/10.1016/j.aoas.2020.08.001
J.S. Kim, S.D. Jo, G.L. Seah, I. Kim and Y.S. Nam, J. Ind. Eng. Chem., 21, 1137 (2015); https://doi.org/10.1016/j.jiec.2014.05.026
H. Rosaini, A. Halim, I.E. Sandi, I. Makmur, R. Asra and W.M. Sidoretno, Int. Res. J. Pharm., 12, 21 (2021); https://doi.org/10.7897/2230-8407.1201112
X. Li, W. Li, M. Wang and Z. Liao, J. Control. Release, 335, 437 (2021); https://doi.org/10.1016/j.jconrel.2021.05.042
J. Annamalai and T. Nallamuthu, Appl. Nanosci., 6, 259 (2016); https://doi.org/10.1007/s13204-015-0426-6
Z. Gün Gök, A. Demiral, O. Bozkaya and M. Yigitoglu, Polym. Bull., 78, 7241 (2021); https://doi.org/10.1007/s00289-020-03486-9
A.M. Alwan, R.A. Khamis and S.M. Abdallah, Iraqi J. Sci., 26, 1274 (2019); https://doi.org/10.24996/ijs.2019.60.6.11
Y.S. Sujitha and Y.I. Muzib, Int. J. Pharm. Investig., 10, (2020); https://doi.org/10.5530/ijpi.2020.4.87
P. Yadav, S. Pandey and S.K. Dubey, in eds.: K.A. Abd-Elsalam, A.F. Hashim, F.K. Ahmed and S. Thomas, S. Nano-Enhanced Biopolymers for Antimicrobial Applications, In: Biopolymeric Nanoparticles for Agricultural Applications, Springer, Cham, pp. 175-208 (2024).
Y. Fan, M. Lüchow, Y. Zhang, J. Lin, L. Fortuin, S. Mohanty, A. Brauner and M. Malkoch, Adv. Funct. Mater., 31, 2006453 (2021); https://doi.org/10.1002/adfm.202006453
Y.P. Talekar, K.G. Apte, S.V. Paygude, P.R. Tondare and P.B. Parab, J. Ayurveda Integr. Med., 8, 73 (2017); https://doi.org/10.1016/j.jaim.2016.11.007
J.A. Garza-Cervantes, G. Mendiola-Garza, E.M. de Melo, T.I.J. Dugmore, A.S. Matharu and J.R. Morones-Ramirez, Sci. Rep., 10, 7281 (2020); https://doi.org/10.1038/s41598-020-64127-9
N. Hoshyar, S. Gray, H. Han and G. Bao, Nanomedicine, 11, 673 (2016); https://doi.org/10.2217/nnm.16.5
R. Yahya and N.M. Alharbi, Int. J. Biol. Macromol., 253, 127080 (2023); https://doi.org/10.1016/j.ijbiomac.2023.127080
A. Sharma, C. Verma, S. Mukhopadhyay, A. Gupta and B. Gupta, ACS Appl. Nano Mater., 5, 8546 (2022); https://doi.org/10.1021/acsanm.2c01959
R. Shivhare and N. Jain, J. ReAttach Therapy Develop. Div., 6, 1825 (2023); https://doi.org/10.53555/jrtdd.v6i9s.2489