Copyright (c) 2025 SUNIL JOSE THERATTIL, DINOOP LAL, Rajesh, Anju Rose, Rijoy K J, Savitha Unnikrishnan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Modified Graphene Oxide-Zinc Oxide Assisted Accelerated Photodegradation of Polystyrene under Ultraviolet Irradiation
Corresponding Author(s) : T. Sunil Jose
Asian Journal of Chemistry,
Vol. 37 No. 2 (2025): Vol 37 Issue 2, 2025
Abstract
In this work, the photodegradation of polystyrene (PS) was investigated using modified graphene oxide-zinc oxide (ZnO-GO) photocatalyst under ultraviolet radiation. The optical band gap energy of ZnO decreased in ZnO-GO composites. Photodegradation of PS, PS-ZnO and PS-ZnO-GO composites were studied under artificial UV radiation. PS-ZnO-GO composites underwent superior chain scission compared to PS-ZnO and pristine PS, upon UV exposure, as evident from gel permeation chromatography (GPC). FTIR spectra revealed the existence of strong chemical interaction between ZnO and GO in the prepared composites. Moreover, FTIR spectroscopy substantiated the occurrence of photo-oxidation in PS chains upon UV exposure. The decrease in the mechanical properties, dielectric breakdown voltage and thermal stability the irradiated specimens demonstrating the spread of degradation of PS chain to the inner matrix from the surface. Considering the results of all the analysis techniques, it was evident that PS-ZnO-GO composites underwent superior photodegradation compared to PS-ZnO and pristine PS. A possible mechanism of degradation was also proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Geyer, J.R. Jambeck and K.L. Law, Sci. Adv., 3, e1700782 (2017); https://doi.org/10.1126/sciadv.1700782
- A.L. Brooks, S. Wang and J.R. Jambeck, Sci. Adv., 4, eaat0131 (2018); https://doi.org/10.1126/sciadv.aat0131
- T.R. Walker and L. Fequet, Trends Analyt. Chem., 160, 116984 (2023); https://doi.org/10.1016/j.trac.2023.116984
- B.G. Kwon, K. Saido, K. Koizumi, H. Sato, N. Ogawa, S.-Y. Chung, T. Kusui, Y. Kodera and K. Kogure, Environ. Pollut., 188, 45 (2014); https://doi.org/10.1016/j.envpol.2014.01.019
- G.Q. Ali, G.A. El-Hiti, I.H.R. Tomi, R. Haddad, A.J. Al-Qaisi and E. Yousif, Molecules, 21, 1699 (2016); https://doi.org/10.3390/molecules21121699
- N. Chaukura, W. Gwenzi, T. Bunhu, D.T. Ruziwa and I. Pumure, Resour. Conserv. Recycling, 107, 157 (2016); https://doi.org/10.1016/j.resconrec.2015.10.031
- Y. Lei, H. Lei and J. Huo, Polym. Degrad. Stab., 118, 1 (2015); https://doi.org/10.1016/j.polymdegradstab.2015.04.005
- F.H. Abdullah, N.H.H.A. Bakar and M.A. Bakar, J. Hazard. Mater., 424, 127416 (2022); https://doi.org/10.1016/j.jhazmat.2021.127416
- M. Rafique, R. Tahir, S.S.A. Gillani, M.B. Tahir, M. Shakil, T. Iqbal and M.O. Abdellahi, Int. J. Environ. Anal. Chem., 102, 23 (2022); https://doi.org/10.1080/03067319.2020.1715379
- M.A. Fagier, J. Nanotechnol., 2021, 6629180 (2021); https://doi.org/10.1155/2021/6629180
- V. Gilja, I. Vrban, V. Mandic, M. Žic and Z. Hrnjak-Murgic, Polymers, 10, 940 (2018); https://doi.org/10.3390/polym10090940.
- S.G. Kumar and K.S.R.K. Rao, Appl. Surf. Sci., 391(Part B), 124 (2017); https://doi.org/10.1016/j.apsusc.2016.07.081
- N.T. Padmanabhan, N. Thomas, J. Louis, D.T. Mathew, P. Ganguly, H. John and S.C. Pillai, Chemosphere, 271, 129506 (2021); https://doi.org/10.1016/j.chemosphere.2020.129506
- S. Sardar, T. Munawar, F. Mukhtar, M.S. Nadeem, S.A. Khan, M. Koc, S. Manzoor, M.N. Ashiq and F. Iqbal, Mater. Sci. Eng. B, 288, 116151 (2023); https://doi.org/10.1016/j.mseb.2022.116151
- H.-Y. Phin, Y.-T. Ong and J.-C. Sin, J. Environ. Chem. Eng., 8, 103222 (2020); https://doi.org/10.1016/j.jece.2019.103222
- T.V.M. Sreekanth, M.-J. Jung and I.-Y. Eom, Appl. Surf. Sci., 361, 102 (2016); https://doi.org/10.1016/j.apsusc.2015.11.146
- S. Lowe and Y. L. Zhong, in eds.: A.M. Dimiev and S. Eigler, Challenges of Industrial-Scale Graphene Oxide Production, In: Graphene Oxide: Fundamentals and Applications, Wiley, Chap. 13, p. 410 (2016); https://doi.org/10.1002/9781119069447.ch13
- D.G. Papageorgiou, I.A. Kinloch and R.J. Young, Prog. Mater. Sci., 90, 75 (2017); https://doi.org/10.1016/j.pmatsci.2017.07.004
- S. Kumar, S. Pratap, V. Kumar, R.K. Mishra, J.S. Gwag and B. Chakraborty, Luminescence, 38, 909 (2023); https://doi.org/10.1002/bio.4334
- A. Kumar, K. Sharma and A.R. Dixit, Mol. Simul., 46, 136 (2020); https://doi.org/10.1080/08927022.2019.1680844
- H. Huang, H. Shi, P. Das, J. Qin, Y. Li, X. Wang, F. Su, P. Wen, S. Li, P. Lu, F. Liu, Y. Li, Y. Zhang, Y. Wang, Z.-S. Wu and H.-M. Cheng, Adv. Funct. Mater., 30, 1909035 (2020); https://doi.org/10.1002/adfm.201909035
- A. Raslan, L. Saenz del Burgo, J. Ciriza and J.L. Pedraz, Int. J. Pharm., 580, 119226 (2020); https://doi.org/10.1016/j.ijpharm.2020.119226
- S. Afroj, S. Tan, A.M. Abdelkader, K.S. Novoselov and N. Karim, Adv. Funct. Mater., 30, 2000293 (2020); https://doi.org/10.1002/adfm.202000293
- A.G. Olabi, M.A. Abdelkareem, T. Wilberforce and E.T. Sayed, Renew. Sustain. Energy Rev., 135, 110026 (2021); https://doi.org/10.1016/j.rser.2020.110026
- M. Shaker, R. Riahifar and Y. Li, FlatChem, 22, 100171 (2020); https://doi.org/10.1016/j.flatc.2020.100171
- S. Wu, X. Wang, Z. Li, S. Zhang and F. Xing, Micromachines, 11, 1059 (2020); https://doi.org/10.3390/mi11121059
- A.M. Dimiev and J.M. Tour, ACS Nano, 8, 3060 (2014); https://doi.org/10.1021/nn500606a
- F. Farjadian, S. Abbaspour, M.A.A. Sadatlu, S. Mirkiani, A. Ghasemi, M. Hoseini-Ghahfarokhi, N. Mozaffari, M. Karimi and M.R. Hamblin, ChemistrySelect, 5, 10200 (2020); https://doi.org/10.1002/slct.202002501
- U. Naknikham, V. Boffa, G. Magnacca, A. Qiao, L.R. Jensen and Y. Yue, RSC Adv., 7, 41217 (2017); https://doi.org/10.1039/C7RA07472G
- P.N.O. Gillespie and N. Martsinovich, ACS Appl. Mater. Interfaces, 11, 31909 (2019); https://doi.org/10.1021/acsami.9b09235
- D. He, Y. Li, J. Wang, Y. Yang and Q. An, Appl. Microsc., 46, 37 (2016); https://doi.org/10.9729/AM.2016.46.1.37
- A. Kumar, A. Bansal, B. Behera, S.L. Jain and S.S. Ray, Mater. Chem. Phys., 172, 189 (2016); https://doi.org/10.1016/j.matchemphys.2016.01.064
- R. Djellabi, B. Yang, Y. Wang, X. Cui and X. Zhao, Chem. Eng. J., 366, 172 (2019); https://doi.org/10.1016/j.cej.2019.02.035
- S. Dinoop lal, T. Sunil Jose, C. Rajesh and K.J. Arun, Polym. Degrad. Stab., 184, 109476 (2021); https://doi.org/10.1016/j.polymdegradstab.2020.109476
- K. Chaudhary, M. Aadil, S. Zulfiqar, S. Ullah, S. Haider, P.O. Agboola, M.F. Warsi and I. Shakir, Fuller. Nanotub. Carbon Nanostruct., 29, 915 (2021); https://doi.org/10.1080/1536383X.2021.1917553
- P. Rai and Y. Yu, Sens. Actuators B Chem., 173, 58 (2012); https://doi.org/10.1016/j.snb.2012.05.068
- D. Chen, L. Zou, S. Li and F. Zheng, Sci. Rep., 6, 20335 (2016); https://doi.org/10.1038/srep20335
- M. Khannam, S. Sharma, S. Dolui and S.K. Dolui, RSC Ad., 6, 55406 (2016); https://doi.org/10.1039/C6RA07577K
- K.S. Lee, C.W. Park, S.J. Lee and J.-D. Kim, J. Alloys Compd., 739, 522 (2018); https://doi.org/10.1016/j.jallcom.2017.12.248
- S.D. Lal, T.S. Jose, C. Rajesh, P.A.R. Puthukkara, K.S. Unnikrishnan and K.J. Arun, Eur. Polym. J., 153, 110493 (2021); https://doi.org/10.1016/j.eurpolymj.2021.110493
- H. Arami, M. Mazloumi, R. Khalifehzadeh and S.K. Sadrnezhaad, Mater. Lett., 61, 4559 (2007); https://doi.org/10.1016/j.matlet.2007.02.051
- R. López and R. Gómez, J. Sol-Gel Sci. Technol., 61, 1 (2012); https://doi.org/10.1007/s10971-011-2582-9
- A.M. Abdelghany, E.M. Abdelrazek, S.I. Badr and M.A. Morsi, Mater. Des., 97, 532 (2016); https://doi.org/10.1016/j.matdes.2016.02.082
- D. Hwang, Y. Shul and Y. Chu, Polym. Compos., 36, 1462 (2015); https://doi.org/10.1002/pc.23052
- S. Cho and W. Choi, J. Photochem. Photobiol. Chem., 143, 221 (2001); https://doi.org/10.1016/S1010-6030(01)00499-3
- D. Wang, M. Huang, J. Zha, J. Zhao, Z. Dang and Z. Cheng, IEEE Trans. Dielectr. Electr. Insul., 21, 1438 (2014); https://doi.org/10.1109/TDEI.2013.004329
- S.D. Lal, T.S. Jose and C. Rajesh, Environ. Nanotechnol. Monit. Manag., 12, 100229 (2019); https://doi.org/10.1016/j.enmm.2019.100229
- A.A. Yaqoob, N.H. Mohd Noor, A. Serrà and M.N.M. Ibrahim, Nanomaterials, 10, 932 (2020); https://doi.org/10.3390/nano10050932
- B. Tang, H. Chen, H. Peng, Z. Wang and W. Huang, Nanomaterials, 8, 105 (2018); https://doi.org/10.3390/nano8020105
References
R. Geyer, J.R. Jambeck and K.L. Law, Sci. Adv., 3, e1700782 (2017); https://doi.org/10.1126/sciadv.1700782
A.L. Brooks, S. Wang and J.R. Jambeck, Sci. Adv., 4, eaat0131 (2018); https://doi.org/10.1126/sciadv.aat0131
T.R. Walker and L. Fequet, Trends Analyt. Chem., 160, 116984 (2023); https://doi.org/10.1016/j.trac.2023.116984
B.G. Kwon, K. Saido, K. Koizumi, H. Sato, N. Ogawa, S.-Y. Chung, T. Kusui, Y. Kodera and K. Kogure, Environ. Pollut., 188, 45 (2014); https://doi.org/10.1016/j.envpol.2014.01.019
G.Q. Ali, G.A. El-Hiti, I.H.R. Tomi, R. Haddad, A.J. Al-Qaisi and E. Yousif, Molecules, 21, 1699 (2016); https://doi.org/10.3390/molecules21121699
N. Chaukura, W. Gwenzi, T. Bunhu, D.T. Ruziwa and I. Pumure, Resour. Conserv. Recycling, 107, 157 (2016); https://doi.org/10.1016/j.resconrec.2015.10.031
Y. Lei, H. Lei and J. Huo, Polym. Degrad. Stab., 118, 1 (2015); https://doi.org/10.1016/j.polymdegradstab.2015.04.005
F.H. Abdullah, N.H.H.A. Bakar and M.A. Bakar, J. Hazard. Mater., 424, 127416 (2022); https://doi.org/10.1016/j.jhazmat.2021.127416
M. Rafique, R. Tahir, S.S.A. Gillani, M.B. Tahir, M. Shakil, T. Iqbal and M.O. Abdellahi, Int. J. Environ. Anal. Chem., 102, 23 (2022); https://doi.org/10.1080/03067319.2020.1715379
M.A. Fagier, J. Nanotechnol., 2021, 6629180 (2021); https://doi.org/10.1155/2021/6629180
V. Gilja, I. Vrban, V. Mandic, M. Žic and Z. Hrnjak-Murgic, Polymers, 10, 940 (2018); https://doi.org/10.3390/polym10090940.
S.G. Kumar and K.S.R.K. Rao, Appl. Surf. Sci., 391(Part B), 124 (2017); https://doi.org/10.1016/j.apsusc.2016.07.081
N.T. Padmanabhan, N. Thomas, J. Louis, D.T. Mathew, P. Ganguly, H. John and S.C. Pillai, Chemosphere, 271, 129506 (2021); https://doi.org/10.1016/j.chemosphere.2020.129506
S. Sardar, T. Munawar, F. Mukhtar, M.S. Nadeem, S.A. Khan, M. Koc, S. Manzoor, M.N. Ashiq and F. Iqbal, Mater. Sci. Eng. B, 288, 116151 (2023); https://doi.org/10.1016/j.mseb.2022.116151
H.-Y. Phin, Y.-T. Ong and J.-C. Sin, J. Environ. Chem. Eng., 8, 103222 (2020); https://doi.org/10.1016/j.jece.2019.103222
T.V.M. Sreekanth, M.-J. Jung and I.-Y. Eom, Appl. Surf. Sci., 361, 102 (2016); https://doi.org/10.1016/j.apsusc.2015.11.146
S. Lowe and Y. L. Zhong, in eds.: A.M. Dimiev and S. Eigler, Challenges of Industrial-Scale Graphene Oxide Production, In: Graphene Oxide: Fundamentals and Applications, Wiley, Chap. 13, p. 410 (2016); https://doi.org/10.1002/9781119069447.ch13
D.G. Papageorgiou, I.A. Kinloch and R.J. Young, Prog. Mater. Sci., 90, 75 (2017); https://doi.org/10.1016/j.pmatsci.2017.07.004
S. Kumar, S. Pratap, V. Kumar, R.K. Mishra, J.S. Gwag and B. Chakraborty, Luminescence, 38, 909 (2023); https://doi.org/10.1002/bio.4334
A. Kumar, K. Sharma and A.R. Dixit, Mol. Simul., 46, 136 (2020); https://doi.org/10.1080/08927022.2019.1680844
H. Huang, H. Shi, P. Das, J. Qin, Y. Li, X. Wang, F. Su, P. Wen, S. Li, P. Lu, F. Liu, Y. Li, Y. Zhang, Y. Wang, Z.-S. Wu and H.-M. Cheng, Adv. Funct. Mater., 30, 1909035 (2020); https://doi.org/10.1002/adfm.201909035
A. Raslan, L. Saenz del Burgo, J. Ciriza and J.L. Pedraz, Int. J. Pharm., 580, 119226 (2020); https://doi.org/10.1016/j.ijpharm.2020.119226
S. Afroj, S. Tan, A.M. Abdelkader, K.S. Novoselov and N. Karim, Adv. Funct. Mater., 30, 2000293 (2020); https://doi.org/10.1002/adfm.202000293
A.G. Olabi, M.A. Abdelkareem, T. Wilberforce and E.T. Sayed, Renew. Sustain. Energy Rev., 135, 110026 (2021); https://doi.org/10.1016/j.rser.2020.110026
M. Shaker, R. Riahifar and Y. Li, FlatChem, 22, 100171 (2020); https://doi.org/10.1016/j.flatc.2020.100171
S. Wu, X. Wang, Z. Li, S. Zhang and F. Xing, Micromachines, 11, 1059 (2020); https://doi.org/10.3390/mi11121059
A.M. Dimiev and J.M. Tour, ACS Nano, 8, 3060 (2014); https://doi.org/10.1021/nn500606a
F. Farjadian, S. Abbaspour, M.A.A. Sadatlu, S. Mirkiani, A. Ghasemi, M. Hoseini-Ghahfarokhi, N. Mozaffari, M. Karimi and M.R. Hamblin, ChemistrySelect, 5, 10200 (2020); https://doi.org/10.1002/slct.202002501
U. Naknikham, V. Boffa, G. Magnacca, A. Qiao, L.R. Jensen and Y. Yue, RSC Adv., 7, 41217 (2017); https://doi.org/10.1039/C7RA07472G
P.N.O. Gillespie and N. Martsinovich, ACS Appl. Mater. Interfaces, 11, 31909 (2019); https://doi.org/10.1021/acsami.9b09235
D. He, Y. Li, J. Wang, Y. Yang and Q. An, Appl. Microsc., 46, 37 (2016); https://doi.org/10.9729/AM.2016.46.1.37
A. Kumar, A. Bansal, B. Behera, S.L. Jain and S.S. Ray, Mater. Chem. Phys., 172, 189 (2016); https://doi.org/10.1016/j.matchemphys.2016.01.064
R. Djellabi, B. Yang, Y. Wang, X. Cui and X. Zhao, Chem. Eng. J., 366, 172 (2019); https://doi.org/10.1016/j.cej.2019.02.035
S. Dinoop lal, T. Sunil Jose, C. Rajesh and K.J. Arun, Polym. Degrad. Stab., 184, 109476 (2021); https://doi.org/10.1016/j.polymdegradstab.2020.109476
K. Chaudhary, M. Aadil, S. Zulfiqar, S. Ullah, S. Haider, P.O. Agboola, M.F. Warsi and I. Shakir, Fuller. Nanotub. Carbon Nanostruct., 29, 915 (2021); https://doi.org/10.1080/1536383X.2021.1917553
P. Rai and Y. Yu, Sens. Actuators B Chem., 173, 58 (2012); https://doi.org/10.1016/j.snb.2012.05.068
D. Chen, L. Zou, S. Li and F. Zheng, Sci. Rep., 6, 20335 (2016); https://doi.org/10.1038/srep20335
M. Khannam, S. Sharma, S. Dolui and S.K. Dolui, RSC Ad., 6, 55406 (2016); https://doi.org/10.1039/C6RA07577K
K.S. Lee, C.W. Park, S.J. Lee and J.-D. Kim, J. Alloys Compd., 739, 522 (2018); https://doi.org/10.1016/j.jallcom.2017.12.248
S.D. Lal, T.S. Jose, C. Rajesh, P.A.R. Puthukkara, K.S. Unnikrishnan and K.J. Arun, Eur. Polym. J., 153, 110493 (2021); https://doi.org/10.1016/j.eurpolymj.2021.110493
H. Arami, M. Mazloumi, R. Khalifehzadeh and S.K. Sadrnezhaad, Mater. Lett., 61, 4559 (2007); https://doi.org/10.1016/j.matlet.2007.02.051
R. López and R. Gómez, J. Sol-Gel Sci. Technol., 61, 1 (2012); https://doi.org/10.1007/s10971-011-2582-9
A.M. Abdelghany, E.M. Abdelrazek, S.I. Badr and M.A. Morsi, Mater. Des., 97, 532 (2016); https://doi.org/10.1016/j.matdes.2016.02.082
D. Hwang, Y. Shul and Y. Chu, Polym. Compos., 36, 1462 (2015); https://doi.org/10.1002/pc.23052
S. Cho and W. Choi, J. Photochem. Photobiol. Chem., 143, 221 (2001); https://doi.org/10.1016/S1010-6030(01)00499-3
D. Wang, M. Huang, J. Zha, J. Zhao, Z. Dang and Z. Cheng, IEEE Trans. Dielectr. Electr. Insul., 21, 1438 (2014); https://doi.org/10.1109/TDEI.2013.004329
S.D. Lal, T.S. Jose and C. Rajesh, Environ. Nanotechnol. Monit. Manag., 12, 100229 (2019); https://doi.org/10.1016/j.enmm.2019.100229
A.A. Yaqoob, N.H. Mohd Noor, A. Serrà and M.N.M. Ibrahim, Nanomaterials, 10, 932 (2020); https://doi.org/10.3390/nano10050932
B. Tang, H. Chen, H. Peng, Z. Wang and W. Huang, Nanomaterials, 8, 105 (2018); https://doi.org/10.3390/nano8020105