Copyright (c) 2025 Amel Ahmed, Izzeldin Hamza

This work is licensed under a Creative Commons Attribution 4.0 International License.
Development of High-Performance Composite from Sugarcane Bagasse and Multi-Walled Carbon Nanotubes for Enhanced Adsorption Applications
Corresponding Author(s) : Amel Y. Ahmed
Asian Journal of Chemistry,
Vol. 37 No. 3 (2025): Vol 37 Issue 3, 2025
Abstract
A novel composite of sugarcane bagasse with multi-walled carbon nanotubes (MWCNTs) in the ratio of 3:1 (m/m), respectively, was prepared. The bagasse was initially combined with functionalized MWCNTs using an HNO3-H2SO4 mixture, after which it was crosslinked with glutaraldehyde. Several characterization techniques like SEM, TEM, FTIR, Raman spectroscopy and thermal gravimetric analysis, were used to demonstrate the successful functionalization of the MWCNTs and the covalent anchorage of the bagasse onto the functionalized MWCNTs. The composite was subsequently evaluated alongside bagasse for its effectiveness in removing heavy metal ions from a multi-component metal ion mixture through batch adsorption studies. The findings indicated the enhanced sorption properties for some heavy metals. This composite, therefore, shows good potential for applications that involve pre-concentration and removal of water pollutants.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.J.M. Rocha, V.M. Nascimento, A.R. Gonçalves, V.F.N. Silva and C. Martín, Ind. Crops Prod., 64, 52 (2015); https://doi.org/10.1016/j.indcrop.2014.11.003
- L. Moghaddam, Z. Zhang, R.M. Wellard, J.P. Bartley, I.M. O’Hara and W.O.S. Doherty, Biomass Bioenergy, 70, 498 (2014); https://doi.org/10.1016/j.biombioe.2014.07.030
- L.V. Gurgel and L.F. Gil, Water Res., 43, 4479 (2009); https://doi.org/10.1016/j.watres.2009.07.017
- Z. Aksu, Process Biochem., 40, 997 (2005); https://doi.org/10.1016/j.procbio.2004.04.008
- Y. Jiang, H. Pang and B. Liao, J. Hazard. Mater., 164, 1 (2009); https://doi.org/10.1016/j.jhazmat.2008.07.107
- P.L. Homagai, K.N. Ghimire and K. Inoue, Sep. Sci. Technol., 46, 330 (2010); https://doi.org/10.1080/01496395.2010.506903
- I. Aloma, M.A. Martin Lara, I.L. Rodriguez, G. Blazquez and M. Calero, J. Taiwan Inst. Chem. Eng., 43, 275 (2012); https://doi.org/10.1016/j.jtice.2011.10.011
- J.L.R.P. Filho, L.T. Sader, M.H.R.Z. Damianovic, E. Foresti and E.L. Silva, Chem. Eng. J., 158, 441 (2010); https://doi.org/10.1016/j.cej.2010.01.014
- L.G.T. Carpio and F. Simone de Souza, Renew. Energy, 111, 771 (2017); https://doi.org/10.1016/j.renene.2017.05.015
- N.M. Noor, R. Othman, N.M. Mubarak and E.C. Abdullah, J. Taiwan Inst. Chem. Eng., 78, 168 (2017); https://doi.org/10.1016/j.jtice.2017.05.023
- A. Mahvi, Int. J. Environ. Sci. Technol., 5, 275 (2008); https://doi.org/10.1007/BF03326022
- S. Liu, H. Ge, C. Wang, Y. Zou and J. Liu, Sci. Total Environ., 628-629, 959 (2018); https://doi.org/10.1016/j.scitotenv.2018.02.134
- B.A. Ezeonuegbu, D.A. Machido, C.M.Z. Whong, W.S. Japhet, A. Alexiou, S.T. Elazab, N. Qusty, C.A. Yaro and G. El-Saber Batiha, Biotechnol. Rep., 30, e00614 (2021); https://doi.org/10.1016/j.btre.2021.e00614
- S. Islam, K.A. Shah, H. Mavi, A. Shaukla, S. Rath and Harsh, Bull. Mater. Sci., 30, 295 (2007); https://doi.org/10.1007/s12034-007-0049-y
- O. Karnitz Jr., L.V.A. Gurgel, J.C.P. de Melo, V.R. Botaro, T.M.S. Melo, R.P. de Freitas Gil and L.F. Gil, Bioresour. Technol., 98, 1291 (2007); https://doi.org/10.1016/j.biortech.2006.05.013
- V. Dos Santos, J. De Souza, C. Tarley, J. Caetano and D. Dragunski, Water Air Soil Pollut., 216, 351 (2011); https://doi.org/10.1007/s11270-010-0537-3
- J. Mo, Q. Yang, N. Zhang, W. Zhang, Y. Zheng and Z. Zhang, J. Environ. Manage., 227, 395 (2018); https://doi.org/10.1016/j.jenvman.2018.08.069
- M.S. Dresselhaus, G. Dresselhaus and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Topics Applied Physics, Springer-Verlag, Berlin, Springer (2001).
- A. Peigney, C. Laurent, E. Flahaut, R. Bacsa and A. Rousset, Carbon, 39, 507 (2001); https://doi.org/10.1016/S0008-6223(00)00155-X
- H. Yu, J.-G. Kim, D.-M. Lee, S. Lee, M.G. Han, J.-W. Park, S.M. Kim, N.D. Kim and H.S. Jeong, Adv. Energy Mater., 14, 2303003 (2024); https://doi.org/10.1002/aenm.202303003
- H. Kuzmany, A. Kukovecz, F. Simon, M. Holzweber, C. Kramberger and T. Pichler, Synth. Met., 141, 113 (2004); https://doi.org/10.1016/j.synthmet.2003.08.018
- K. Balasubramanian and M. Burghard, Small, 1, 180 (2005); https://doi.org/10.1002/smll.200400118
- M.I. Kandah and J.L. Meunier, J. Hazard. Mater., 146, 283 (2007); https://doi.org/10.1016/j.jhazmat.2006.12.019
- D. Xu, X. Tan, C. Chen and X. Wang, J. Hazard. Mater., 154, 407 (2008); https://doi.org/10.1016/j.jhazmat.2007.10.059
- S. Yang, J. Li, D. Shao, J. Hu and X. Wang, J. Hazard. Mater., 166, 109 (2009); https://doi.org/10.1016/j.jhazmat.2008.11.003
- F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011
- M. Abdolkarimi-Mahabadi and M. Manteghian, Fuller. Nanotub. Carbon Nanostruct., 23, 860 (2015); https://doi.org/10.1080/1536383X.2015.1016608
- A.H. Hammadi, A.M. Jasim, F.H. Abdulrazzak, A.M.A. Al-Sammarraie, Y. Cherifi, R. Boukherroub and F.H. Hussein, Materials, 13, 2342 (2020); https://doi.org/10.3390/ma13102342
- Y. Xu, A. Rosa, X. Liu and D. Su, N. Carbon Mater., 26, 57 (2011); https://doi.org/10.1016/S1872-5805(11)60066-8
- B. Pan and B. Xing, Environ. Sci. Technol., 42, 9005 (2008); https://doi.org/10.1021/es801777n
- K. Yang and B. Xing, Chem. Rev., 110, 5989 (2010); https://doi.org/10.1021/cr100059s
- X. Ren, C. Chen, M. Nagatsu and X. Wang, Chem. Eng. J., 170, 395 (2011); https://doi.org/10.1016/j.cej.2010.08.045
- L.M. Famá, V. Pettarin, S.N. Goyanes and C.R. Bernal, Carbohydr. Polym., 83, 1226 (2011); https://doi.org/10.1016/j.carbpol.2010.09.027
- V.O. Nyamori, E.N. Nxumalo and N.J. Coville, J. Organomet. Chem., 694, 2222 (2009); https://doi.org/10.1016/j.jorganchem.2009.02.031
- H.P. Boehm, Carbon, 40, 145 (2002); https://doi.org/10.1016/S0008-6223(01)00165-8
- S. Rosenzweig, G.A. Sorial, E. Sahle-Demessie and J. Mack, Chemosphere, 90, 395 (2013); https://doi.org/10.1016/j.chemosphere.2012.07.034
- E.J. Park, J.H. Jin, J.H. Kim, et al., Microchim. Acta, 174, 231 (2011); https://doi.org/10.1007/s00604-011-0605-4
- V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis and C. Galiotis, Carbon, 46, 833 (2008); https://doi.org/10.1016/j.carbon.2008.02.012
- B. Nora, F. Fatirah, A. Zaiton and S. Shafinaz, Dig. J. Nanomater. Biostruct., 7, 33 (2012).
- H. Modekwe and I. Ramatsa, Environ. Res. Technol., 7, 108 (2024); https://doi.org/10.35208/ert.1306840
- K. Bilba and A. Ouensanga, J. Anal. Appl. Pyrolysis, 38, 61 (1996); https://doi.org/10.1016/S0165-2370(96)00952-7
- S. Santangelo, G. Messina, G. Faggio, S.H. Abdul Rahim and C. Milone, J. Raman Spectrosc., 43, 1432 (2012); https://doi.org/10.1002/jrs.4097
- Y.P. Sun, K. Fu, Y. Lin and W. Huang, Acc. Chem. Res., 35, 1096 (2002); https://doi.org/10.1021/ar010160v
- C. Vix-Guterl, M. Couzi, J. Dentzer, M. Trinquecoste and P. Delhaes, J. Phys. Chem. B, 108, 19361 (2004); https://doi.org/10.1021/jp047237s
- P. Rai, D.R. Mohapatra, K. Hazra, D. Misra, J. Ghatak and P. Satyam, Chem. Phys. Lett., 455, 83 (2008); https://doi.org/10.1016/j.cplett.2008.02.057
- R. Yudianti, O. Holia and S. Sudirman, Open Mater. Sci. J., 5, 242 (2011); https://doi.org/10.2174/1874088X01105010242
- G.J. Griffin, Bioresour. Technol., 102, 8199 (2011); https://doi.org/10.1016/j.biortech.2011.05.051
- B. Ramajo-Escalera, A. Espina, J.R. García, J.H. Sosa-Arnao and S.A. Nebra, Thermochim. Acta, 448, 111 (2006); https://doi.org/10.1016/j.tca.2006.07.001
- L.S.K. Pang, J.D. Saxby and S.P. Chatfield, J. Phys. Chem., 97, 6941 (1993); https://doi.org/10.1021/j100129a001
- B. Scheibe, E. Borowiak-Palen and R.J. Kalenczuk, Mater. Charact., 61, 185 (2010); https://doi.org/10.1016/j.matchar.2009.11.008
- Y.C. Hsieh, Y.C. Chou, C.P. Lin, T.F. Hsieh and C.M. Shu, Aerosol Air Qual. Res., 10, 212 (2010); https://doi.org/10.4209/aaqr.2009.08.0053
- E. Titus, N. Ali, G. Cabral, J. Gracio, P.R. Babu and M.J. Jackson, J. Mater. Eng. Perform., 15, 182 (2006); https://doi.org/10.1361/105994906X95841
- B. Petrova, T. Budinova, B. Tsyntsarski, V. Kochkodan, Z. Shkavro and N. Petrov, Chem. Eng. J., 165, 258 (2010); https://doi.org/10.1016/j.cej.2010.09.026
- Z. Wang, M.D. Shirley, S.T. Meikle, R.L.D. Whitby and S.V. Mikhalovsky, Carbon, 47, 73 (2009); https://doi.org/10.1016/j.carbon.2008.09.038
- H. Liu, F. Yang, Y. Zheng, J. Kang, J. Qu and J.P. Chen, Water Res., 45, 145 (2011); https://doi.org/10.1016/j.watres.2010.08.017
- M. López-Mesas, E.R. Navarrete, F. Carrillo and C. Palet, Chem. Eng. J., 174, 9 (2011); https://doi.org/10.1016/j.cej.2011.07.026
- Z. Gao, T.J. Bandosz, Z. Zhao, M. Han and J. Qiu, J. Hazard. Mater., 167, 357 (2009); https://doi.org/10.1016/j.jhazmat.2009.01.050
- Y.B. Onundi, A.A. Mamun, M.F.A. Khatib, M.A.A. Saadi and A.M. Suleyman, Int. J. Environ. Sci. Technol., 8, 799 (2011); https://doi.org/10.1007/BF03326263
References
G.J.M. Rocha, V.M. Nascimento, A.R. Gonçalves, V.F.N. Silva and C. Martín, Ind. Crops Prod., 64, 52 (2015); https://doi.org/10.1016/j.indcrop.2014.11.003
L. Moghaddam, Z. Zhang, R.M. Wellard, J.P. Bartley, I.M. O’Hara and W.O.S. Doherty, Biomass Bioenergy, 70, 498 (2014); https://doi.org/10.1016/j.biombioe.2014.07.030
L.V. Gurgel and L.F. Gil, Water Res., 43, 4479 (2009); https://doi.org/10.1016/j.watres.2009.07.017
Z. Aksu, Process Biochem., 40, 997 (2005); https://doi.org/10.1016/j.procbio.2004.04.008
Y. Jiang, H. Pang and B. Liao, J. Hazard. Mater., 164, 1 (2009); https://doi.org/10.1016/j.jhazmat.2008.07.107
P.L. Homagai, K.N. Ghimire and K. Inoue, Sep. Sci. Technol., 46, 330 (2010); https://doi.org/10.1080/01496395.2010.506903
I. Aloma, M.A. Martin Lara, I.L. Rodriguez, G. Blazquez and M. Calero, J. Taiwan Inst. Chem. Eng., 43, 275 (2012); https://doi.org/10.1016/j.jtice.2011.10.011
J.L.R.P. Filho, L.T. Sader, M.H.R.Z. Damianovic, E. Foresti and E.L. Silva, Chem. Eng. J., 158, 441 (2010); https://doi.org/10.1016/j.cej.2010.01.014
L.G.T. Carpio and F. Simone de Souza, Renew. Energy, 111, 771 (2017); https://doi.org/10.1016/j.renene.2017.05.015
N.M. Noor, R. Othman, N.M. Mubarak and E.C. Abdullah, J. Taiwan Inst. Chem. Eng., 78, 168 (2017); https://doi.org/10.1016/j.jtice.2017.05.023
A. Mahvi, Int. J. Environ. Sci. Technol., 5, 275 (2008); https://doi.org/10.1007/BF03326022
S. Liu, H. Ge, C. Wang, Y. Zou and J. Liu, Sci. Total Environ., 628-629, 959 (2018); https://doi.org/10.1016/j.scitotenv.2018.02.134
B.A. Ezeonuegbu, D.A. Machido, C.M.Z. Whong, W.S. Japhet, A. Alexiou, S.T. Elazab, N. Qusty, C.A. Yaro and G. El-Saber Batiha, Biotechnol. Rep., 30, e00614 (2021); https://doi.org/10.1016/j.btre.2021.e00614
S. Islam, K.A. Shah, H. Mavi, A. Shaukla, S. Rath and Harsh, Bull. Mater. Sci., 30, 295 (2007); https://doi.org/10.1007/s12034-007-0049-y
O. Karnitz Jr., L.V.A. Gurgel, J.C.P. de Melo, V.R. Botaro, T.M.S. Melo, R.P. de Freitas Gil and L.F. Gil, Bioresour. Technol., 98, 1291 (2007); https://doi.org/10.1016/j.biortech.2006.05.013
V. Dos Santos, J. De Souza, C. Tarley, J. Caetano and D. Dragunski, Water Air Soil Pollut., 216, 351 (2011); https://doi.org/10.1007/s11270-010-0537-3
J. Mo, Q. Yang, N. Zhang, W. Zhang, Y. Zheng and Z. Zhang, J. Environ. Manage., 227, 395 (2018); https://doi.org/10.1016/j.jenvman.2018.08.069
M.S. Dresselhaus, G. Dresselhaus and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Topics Applied Physics, Springer-Verlag, Berlin, Springer (2001).
A. Peigney, C. Laurent, E. Flahaut, R. Bacsa and A. Rousset, Carbon, 39, 507 (2001); https://doi.org/10.1016/S0008-6223(00)00155-X
H. Yu, J.-G. Kim, D.-M. Lee, S. Lee, M.G. Han, J.-W. Park, S.M. Kim, N.D. Kim and H.S. Jeong, Adv. Energy Mater., 14, 2303003 (2024); https://doi.org/10.1002/aenm.202303003
H. Kuzmany, A. Kukovecz, F. Simon, M. Holzweber, C. Kramberger and T. Pichler, Synth. Met., 141, 113 (2004); https://doi.org/10.1016/j.synthmet.2003.08.018
K. Balasubramanian and M. Burghard, Small, 1, 180 (2005); https://doi.org/10.1002/smll.200400118
M.I. Kandah and J.L. Meunier, J. Hazard. Mater., 146, 283 (2007); https://doi.org/10.1016/j.jhazmat.2006.12.019
D. Xu, X. Tan, C. Chen and X. Wang, J. Hazard. Mater., 154, 407 (2008); https://doi.org/10.1016/j.jhazmat.2007.10.059
S. Yang, J. Li, D. Shao, J. Hu and X. Wang, J. Hazard. Mater., 166, 109 (2009); https://doi.org/10.1016/j.jhazmat.2008.11.003
F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011
M. Abdolkarimi-Mahabadi and M. Manteghian, Fuller. Nanotub. Carbon Nanostruct., 23, 860 (2015); https://doi.org/10.1080/1536383X.2015.1016608
A.H. Hammadi, A.M. Jasim, F.H. Abdulrazzak, A.M.A. Al-Sammarraie, Y. Cherifi, R. Boukherroub and F.H. Hussein, Materials, 13, 2342 (2020); https://doi.org/10.3390/ma13102342
Y. Xu, A. Rosa, X. Liu and D. Su, N. Carbon Mater., 26, 57 (2011); https://doi.org/10.1016/S1872-5805(11)60066-8
B. Pan and B. Xing, Environ. Sci. Technol., 42, 9005 (2008); https://doi.org/10.1021/es801777n
K. Yang and B. Xing, Chem. Rev., 110, 5989 (2010); https://doi.org/10.1021/cr100059s
X. Ren, C. Chen, M. Nagatsu and X. Wang, Chem. Eng. J., 170, 395 (2011); https://doi.org/10.1016/j.cej.2010.08.045
L.M. Famá, V. Pettarin, S.N. Goyanes and C.R. Bernal, Carbohydr. Polym., 83, 1226 (2011); https://doi.org/10.1016/j.carbpol.2010.09.027
V.O. Nyamori, E.N. Nxumalo and N.J. Coville, J. Organomet. Chem., 694, 2222 (2009); https://doi.org/10.1016/j.jorganchem.2009.02.031
H.P. Boehm, Carbon, 40, 145 (2002); https://doi.org/10.1016/S0008-6223(01)00165-8
S. Rosenzweig, G.A. Sorial, E. Sahle-Demessie and J. Mack, Chemosphere, 90, 395 (2013); https://doi.org/10.1016/j.chemosphere.2012.07.034
E.J. Park, J.H. Jin, J.H. Kim, et al., Microchim. Acta, 174, 231 (2011); https://doi.org/10.1007/s00604-011-0605-4
V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis and C. Galiotis, Carbon, 46, 833 (2008); https://doi.org/10.1016/j.carbon.2008.02.012
B. Nora, F. Fatirah, A. Zaiton and S. Shafinaz, Dig. J. Nanomater. Biostruct., 7, 33 (2012).
H. Modekwe and I. Ramatsa, Environ. Res. Technol., 7, 108 (2024); https://doi.org/10.35208/ert.1306840
K. Bilba and A. Ouensanga, J. Anal. Appl. Pyrolysis, 38, 61 (1996); https://doi.org/10.1016/S0165-2370(96)00952-7
S. Santangelo, G. Messina, G. Faggio, S.H. Abdul Rahim and C. Milone, J. Raman Spectrosc., 43, 1432 (2012); https://doi.org/10.1002/jrs.4097
Y.P. Sun, K. Fu, Y. Lin and W. Huang, Acc. Chem. Res., 35, 1096 (2002); https://doi.org/10.1021/ar010160v
C. Vix-Guterl, M. Couzi, J. Dentzer, M. Trinquecoste and P. Delhaes, J. Phys. Chem. B, 108, 19361 (2004); https://doi.org/10.1021/jp047237s
P. Rai, D.R. Mohapatra, K. Hazra, D. Misra, J. Ghatak and P. Satyam, Chem. Phys. Lett., 455, 83 (2008); https://doi.org/10.1016/j.cplett.2008.02.057
R. Yudianti, O. Holia and S. Sudirman, Open Mater. Sci. J., 5, 242 (2011); https://doi.org/10.2174/1874088X01105010242
G.J. Griffin, Bioresour. Technol., 102, 8199 (2011); https://doi.org/10.1016/j.biortech.2011.05.051
B. Ramajo-Escalera, A. Espina, J.R. García, J.H. Sosa-Arnao and S.A. Nebra, Thermochim. Acta, 448, 111 (2006); https://doi.org/10.1016/j.tca.2006.07.001
L.S.K. Pang, J.D. Saxby and S.P. Chatfield, J. Phys. Chem., 97, 6941 (1993); https://doi.org/10.1021/j100129a001
B. Scheibe, E. Borowiak-Palen and R.J. Kalenczuk, Mater. Charact., 61, 185 (2010); https://doi.org/10.1016/j.matchar.2009.11.008
Y.C. Hsieh, Y.C. Chou, C.P. Lin, T.F. Hsieh and C.M. Shu, Aerosol Air Qual. Res., 10, 212 (2010); https://doi.org/10.4209/aaqr.2009.08.0053
E. Titus, N. Ali, G. Cabral, J. Gracio, P.R. Babu and M.J. Jackson, J. Mater. Eng. Perform., 15, 182 (2006); https://doi.org/10.1361/105994906X95841
B. Petrova, T. Budinova, B. Tsyntsarski, V. Kochkodan, Z. Shkavro and N. Petrov, Chem. Eng. J., 165, 258 (2010); https://doi.org/10.1016/j.cej.2010.09.026
Z. Wang, M.D. Shirley, S.T. Meikle, R.L.D. Whitby and S.V. Mikhalovsky, Carbon, 47, 73 (2009); https://doi.org/10.1016/j.carbon.2008.09.038
H. Liu, F. Yang, Y. Zheng, J. Kang, J. Qu and J.P. Chen, Water Res., 45, 145 (2011); https://doi.org/10.1016/j.watres.2010.08.017
M. López-Mesas, E.R. Navarrete, F. Carrillo and C. Palet, Chem. Eng. J., 174, 9 (2011); https://doi.org/10.1016/j.cej.2011.07.026
Z. Gao, T.J. Bandosz, Z. Zhao, M. Han and J. Qiu, J. Hazard. Mater., 167, 357 (2009); https://doi.org/10.1016/j.jhazmat.2009.01.050
Y.B. Onundi, A.A. Mamun, M.F.A. Khatib, M.A.A. Saadi and A.M. Suleyman, Int. J. Environ. Sci. Technol., 8, 799 (2011); https://doi.org/10.1007/BF03326263