Copyright (c) 2025 KHUNDRAKPAM NEHRU SINGH NEHRU

This work is licensed under a Creative Commons Attribution 4.0 International License.
Luminescent Red Emitting Magnetic Fe3O4@GdVO4:Eu3+ Nanocomposite: Heat Ability in AC Magnetic Field and Cell Viability in HCT116 Cell Lines
Corresponding Author(s) : Nehru S. Khundrakpam
Asian Journal of Chemistry,
Vol. 37 No. 3 (2025): Vol 37 Issue 3, 2025
Abstract
Red-emitting magnetic Fe3O4@GdVO4:Eu3+ nanocomposite was synthesized to study its heat generation ability under the influence of alternating magnetic fields. The crystalline structure of the Fe3O4 and Fe3O4@GdVO4:Eu3+ nanocomposite were confirmed and determined by X-ray diffraction (XRD) measurement. Fourier transformation infrared (FTIR) spectroscopy confirmed the presence of polyethylene glycol, from the solvent, adhered to the surface of the nanoparticles. From the TEM images, it is suggested that Fe3O4@GdVO4:Eu3+ sample contains spherical (< 10 nm) and cubic (~100 nm) shaped particles. Vibrating sample magnetometry (VSM) analysis revealed the superparamagnetic nature of the sample with sufficient saturation magnetization (Ms) values and low coercivity (Hc) values. The samples were subjected to an alternating magnetic field showing efficient heat generation by the nanoparticles and the nanocomposites viz. 3.05 × 106 and 4.58 × 106 kAm–1 s–1. The Fe3O4@GdVO4:Eu3+ nanocomposite also showed strong red emission under excitation at 300 nm. The prepared nanocomposite was found to have high viability in HCT116 colon cancer cell lines. Therefore, Fe3O4@GdVO4:Eu3+ magnetic luminescent nanocomposite may be useful for optical imaging and hyperthermia applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Ling, X. Tang, F. Wang, X. Zhou, R. Wang, L. Deng, T. Shang, B. Liang, P. Li, H. Ran, Z. Wang, B. Hu, C. Li, G. Zuo and Y. Zheng, RSC Adv., 7, 2913 (2017); https://doi.org/10.1039/C6RA20860F
- J. van der Zee, Ann. Oncol., 13, 1173 (2002); https://doi.org/10.1093/annonc/mdf280
- S.K. Sharma, N. Shrivastava, F. Rossi, L.D. Tung and N.T.K. Thanh, Nano Today, 29, 100795 (2019); https://doi.org/10.1016/j.nantod.2019.100795
- R. Ivkov, Int. J. Hyperthermia, 29, 703 (2013); https://doi.org/10.3109/02656736.2013.857434
- C.S.S.R. Kumar and F. Mohammad, Adv. Drug Deliv. Rev., 63, 789 (2011); https://doi.org/10.1016/j.addr.2011.03.008
- S. Huang, Z. Cheng, P. Ma, X. Kang, Y. Dai and J. Lin, Dalton Trans., 42, 6523 (2013); https://doi.org/10.1039/c3dt33114h
- L. Wang, H. Zhang, Z. Zhou, B. Kong, L. An, J. Wei, H. Yang, J. Zhao and S. Yang, J. Mater. Chem. B Mater. Biol. Med., 3, 1433 (2015); https://doi.org/10.1039/C4TB01981D
- S.S. Yi, J.S. Bae, K.S. Shim, B.K. Moon, H.J. Seo, J.H. Jeong and J.H. Kim, J. Alloys Compd., 408-412, 890 (2006); https://doi.org/10.1016/j.jallcom.2004.12.107
- B.P. Singh, A.K. Parchur, R.S. Ningthoujam, A.A. Ansari, P. Singh and S.B. Rai, Dalton Trans., 43, 4770 (2014); https://doi.org/10.1039/C3DT52786G
- S. Laurent, S. Dutz, U.O. Häfeli and M. Mahmoudi, Adv. Colloid Interface Sci., 166, 8 (2011); https://doi.org/10.1016/j.cis.2011.04.003
- R. Priya, O.P. Pandey and S.J. Dhoble, Optics Laser Technol., 135, 106663 (2021); https://doi.org/10.1016/j.optlastec.2020.106663
- C. Cao, W. Qin, J. Zhang, Y. Wang, P. Zhu, G. Wei, G.Wang, R. Kim and L. Wang, Optics Lett., 33, 857 (2008); https://doi.org/10.1364/OL.33.000857
- N. Kumam, L.P. Singh, S.K. Srivastava and N.R. Singh, J. Lumin., 203, 59 (2018); https://doi.org/10.1016/j.jlumin.2018.05.058
- G.S. Ningombam, R.S. Ningthoujam, S.N. Kalkura and N.R. Singh, J. Phys. Chem. B, 122, 6862 (2018); https://doi.org/10.1021/acs.jpcb.8b02364
- M. Regueiro-Figueroa, S. Gündüz, V. Patinec, N.K. Logothetis, D. Esteban-Gómez, R. Tripier, G. Angelovski and C. Platas-Iglesias, Inorg. Chem., 54, 10342 (2015); https://doi.org/10.1021/acs.inorgchem.5b01719
- H. Li and T.J. Meade, J. Am. Chem. Soc., 141, 17025 (2019); https://doi.org/10.1021/jacs.9b09149
- K. Fukuda, S. Fujieda, K. Shinoda, S. Suzuki and B. Jeyadevan, J. Phys.: Conf. Ser., 352, 012020 (2012); https://doi.org/10.1088/1742-6596/352/1/012020
- P. Caravan, C.T. Farrar, L. Frullano and R. Uppal, Constrat Media Mol. Imaging, 4, 89 (2009); https://doi.org/10.1002/cmmi.267
- S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R.N. Muller, Chem. Rev., 108, 2064 (2008); https://doi.org/10.1021/cr068445e
- S. Mornet, S. Vasseur, F. Grasset and E. Duguet, J. Mater. Chem., 14, 2161 (2004); https://doi.org/10.1039/b402025a
- E. Katz and I. Willner, Angew. Chem. Int. Ed., 43, 6042 (2004); https://doi.org/10.1002/anie.200400651
- T. Matsunaga, Y. Okamura and T. Tanaka, J. Mater. Chem., 14, 2099 (2004); https://doi.org/10.1039/b404844j
- A. Rajan, M. Sharma and N.K. Sahu, Sci. Rep., 10, 15045 (2020); https://doi.org/10.1038/s41598-020-71703-6
- E.M. Materón, C.M. Miyazaki, O. Carr, N. Joshi, P.H.S. Picciani, C.J. Dalmaschio, F. Davis and M. Flavio, Appl. Surf. Sci. Adv., 6, 100163 (2021); https://doi.org/10.1016/j.apsadv.2021.100163
- T. Kim, E.J. Cho, Y. Chae, M. Kim, A. Oh, J. Jin, E.S. Lee, H. Baik, S. Haam, J.S. Suh, Y.M. Huh and K. Lee, Angew. Chem. Int. Ed., 50, 10589 (2011); https://doi.org/10.1002/anie.201103108
- M. Peiravi, H. Eslami, M. Ansari and H. Zare-Zardini, J. Indian Chem. Soc., 99, 100269 (2022); https://doi.org/10.1016/j.jics.2021.100269
- T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4
- J. Beik, Z. Abed, F.S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh and S.K. Kamrava, J. Control. Release, 235, 205 (2016); https://doi.org/10.1016/j.jconrel.2016.05.062
- A. Hajalilou, L.P. Ferreira, M.E. Melo Jorge, C.P. Reis and M.M. Cruz, J. Magnet. Magn. Mater., 537, 168242 (2021); https://doi.org/10.1016/j.jmmm.2021.168242
- A. Alkhayal, A. Fathima, A.H. Alhasan and E.H. Alsharaeh, Nanomaterials, 11, 2398 (2021); https://doi.org/10.3390/nano11092398
- G.S. Ningombam, D. Chattopadhyay, K. Sarkar, S.N. Kalkura and N.R. Singh, Colloids Surf. A Physicochem. Eng. Asp., 625, 126826 (2021); https://doi.org/10.1016/j.colsurfa.2021.126826
- G.S. Ningombam, B. Srinivasan, A.H. Chidananda, S.N. Kalkura, Y. Sharma and N.R. Singh, Dalton Trans., 51, 8510 (2022); https://doi.org/10.1039/D2DT00308B
- C.A. Quinto, P. Mohindra, S. Tong and G. Bao, Nanoscale, 7, 12728 (2015); https://doi.org/10.1039/C5NR02718G
- B.K. Sodipo and A.A. Aziz, J. Magn. Magn. Mater., 416, 275 (2016); https://doi.org/10.1016/j.jmmm.2016.05.019
- Q. Zeng, I. Baker, J.A. Loudis, Y. Liao, P.J. Hoopes and J.B. Weaver, Appl. Phys. Lett., 90, 233112 (2007); https://doi.org/10.1063/1.2746064
- A.I. Prasad, A.K. Parchur, R.R. Juluri, N. Jadhav, B.N. Pandey, R.S. Ningthoujam and R.K. Vatsa, Dalton Trans., 42, 4885 (2013); https://doi.org/10.1039/c2dt32508j
- X.L. Liu, H.M. Fan, J.B. Yi, Y. Yang, E.S.G. Choo, J.M. Xue, D.D. Fan and J. Ding, J. Mater. Chem., 22, 8235 (2012); https://doi.org/10.1039/c2jm30472d
References
Y. Ling, X. Tang, F. Wang, X. Zhou, R. Wang, L. Deng, T. Shang, B. Liang, P. Li, H. Ran, Z. Wang, B. Hu, C. Li, G. Zuo and Y. Zheng, RSC Adv., 7, 2913 (2017); https://doi.org/10.1039/C6RA20860F
J. van der Zee, Ann. Oncol., 13, 1173 (2002); https://doi.org/10.1093/annonc/mdf280
S.K. Sharma, N. Shrivastava, F. Rossi, L.D. Tung and N.T.K. Thanh, Nano Today, 29, 100795 (2019); https://doi.org/10.1016/j.nantod.2019.100795
R. Ivkov, Int. J. Hyperthermia, 29, 703 (2013); https://doi.org/10.3109/02656736.2013.857434
C.S.S.R. Kumar and F. Mohammad, Adv. Drug Deliv. Rev., 63, 789 (2011); https://doi.org/10.1016/j.addr.2011.03.008
S. Huang, Z. Cheng, P. Ma, X. Kang, Y. Dai and J. Lin, Dalton Trans., 42, 6523 (2013); https://doi.org/10.1039/c3dt33114h
L. Wang, H. Zhang, Z. Zhou, B. Kong, L. An, J. Wei, H. Yang, J. Zhao and S. Yang, J. Mater. Chem. B Mater. Biol. Med., 3, 1433 (2015); https://doi.org/10.1039/C4TB01981D
S.S. Yi, J.S. Bae, K.S. Shim, B.K. Moon, H.J. Seo, J.H. Jeong and J.H. Kim, J. Alloys Compd., 408-412, 890 (2006); https://doi.org/10.1016/j.jallcom.2004.12.107
B.P. Singh, A.K. Parchur, R.S. Ningthoujam, A.A. Ansari, P. Singh and S.B. Rai, Dalton Trans., 43, 4770 (2014); https://doi.org/10.1039/C3DT52786G
S. Laurent, S. Dutz, U.O. Häfeli and M. Mahmoudi, Adv. Colloid Interface Sci., 166, 8 (2011); https://doi.org/10.1016/j.cis.2011.04.003
R. Priya, O.P. Pandey and S.J. Dhoble, Optics Laser Technol., 135, 106663 (2021); https://doi.org/10.1016/j.optlastec.2020.106663
C. Cao, W. Qin, J. Zhang, Y. Wang, P. Zhu, G. Wei, G.Wang, R. Kim and L. Wang, Optics Lett., 33, 857 (2008); https://doi.org/10.1364/OL.33.000857
N. Kumam, L.P. Singh, S.K. Srivastava and N.R. Singh, J. Lumin., 203, 59 (2018); https://doi.org/10.1016/j.jlumin.2018.05.058
G.S. Ningombam, R.S. Ningthoujam, S.N. Kalkura and N.R. Singh, J. Phys. Chem. B, 122, 6862 (2018); https://doi.org/10.1021/acs.jpcb.8b02364
M. Regueiro-Figueroa, S. Gündüz, V. Patinec, N.K. Logothetis, D. Esteban-Gómez, R. Tripier, G. Angelovski and C. Platas-Iglesias, Inorg. Chem., 54, 10342 (2015); https://doi.org/10.1021/acs.inorgchem.5b01719
H. Li and T.J. Meade, J. Am. Chem. Soc., 141, 17025 (2019); https://doi.org/10.1021/jacs.9b09149
K. Fukuda, S. Fujieda, K. Shinoda, S. Suzuki and B. Jeyadevan, J. Phys.: Conf. Ser., 352, 012020 (2012); https://doi.org/10.1088/1742-6596/352/1/012020
P. Caravan, C.T. Farrar, L. Frullano and R. Uppal, Constrat Media Mol. Imaging, 4, 89 (2009); https://doi.org/10.1002/cmmi.267
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R.N. Muller, Chem. Rev., 108, 2064 (2008); https://doi.org/10.1021/cr068445e
S. Mornet, S. Vasseur, F. Grasset and E. Duguet, J. Mater. Chem., 14, 2161 (2004); https://doi.org/10.1039/b402025a
E. Katz and I. Willner, Angew. Chem. Int. Ed., 43, 6042 (2004); https://doi.org/10.1002/anie.200400651
T. Matsunaga, Y. Okamura and T. Tanaka, J. Mater. Chem., 14, 2099 (2004); https://doi.org/10.1039/b404844j
A. Rajan, M. Sharma and N.K. Sahu, Sci. Rep., 10, 15045 (2020); https://doi.org/10.1038/s41598-020-71703-6
E.M. Materón, C.M. Miyazaki, O. Carr, N. Joshi, P.H.S. Picciani, C.J. Dalmaschio, F. Davis and M. Flavio, Appl. Surf. Sci. Adv., 6, 100163 (2021); https://doi.org/10.1016/j.apsadv.2021.100163
T. Kim, E.J. Cho, Y. Chae, M. Kim, A. Oh, J. Jin, E.S. Lee, H. Baik, S. Haam, J.S. Suh, Y.M. Huh and K. Lee, Angew. Chem. Int. Ed., 50, 10589 (2011); https://doi.org/10.1002/anie.201103108
M. Peiravi, H. Eslami, M. Ansari and H. Zare-Zardini, J. Indian Chem. Soc., 99, 100269 (2022); https://doi.org/10.1016/j.jics.2021.100269
T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4
J. Beik, Z. Abed, F.S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh and S.K. Kamrava, J. Control. Release, 235, 205 (2016); https://doi.org/10.1016/j.jconrel.2016.05.062
A. Hajalilou, L.P. Ferreira, M.E. Melo Jorge, C.P. Reis and M.M. Cruz, J. Magnet. Magn. Mater., 537, 168242 (2021); https://doi.org/10.1016/j.jmmm.2021.168242
A. Alkhayal, A. Fathima, A.H. Alhasan and E.H. Alsharaeh, Nanomaterials, 11, 2398 (2021); https://doi.org/10.3390/nano11092398
G.S. Ningombam, D. Chattopadhyay, K. Sarkar, S.N. Kalkura and N.R. Singh, Colloids Surf. A Physicochem. Eng. Asp., 625, 126826 (2021); https://doi.org/10.1016/j.colsurfa.2021.126826
G.S. Ningombam, B. Srinivasan, A.H. Chidananda, S.N. Kalkura, Y. Sharma and N.R. Singh, Dalton Trans., 51, 8510 (2022); https://doi.org/10.1039/D2DT00308B
C.A. Quinto, P. Mohindra, S. Tong and G. Bao, Nanoscale, 7, 12728 (2015); https://doi.org/10.1039/C5NR02718G
B.K. Sodipo and A.A. Aziz, J. Magn. Magn. Mater., 416, 275 (2016); https://doi.org/10.1016/j.jmmm.2016.05.019
Q. Zeng, I. Baker, J.A. Loudis, Y. Liao, P.J. Hoopes and J.B. Weaver, Appl. Phys. Lett., 90, 233112 (2007); https://doi.org/10.1063/1.2746064
A.I. Prasad, A.K. Parchur, R.R. Juluri, N. Jadhav, B.N. Pandey, R.S. Ningthoujam and R.K. Vatsa, Dalton Trans., 42, 4885 (2013); https://doi.org/10.1039/c2dt32508j
X.L. Liu, H.M. Fan, J.B. Yi, Y. Yang, E.S.G. Choo, J.M. Xue, D.D. Fan and J. Ding, J. Mater. Chem., 22, 8235 (2012); https://doi.org/10.1039/c2jm30472d