Copyright (c) 2025 Kamalarajan P, ramesh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Molecular Docking, Computational DFT, Biological Activity, Phytochemical Analysis and Spectrum Analysis Investigations of Neoandrographolide
Corresponding Author(s) : P. Kamalarajan
Asian Journal of Chemistry,
Vol. 37 No. 3 (2025): Vol 37 Issue 3, 2025
Abstract
In this work, neoandrographolide (C26H40O8) was isolated first time from the ethanolic extract of Nilavembu Kudineer Chooranam (NKC), traditional Siddha medicine powder. Thin-layer chromatographic (TLC), GC-MS and mass spectrometry techniques were employed to extract after the preliminary phytochemical screening. Neoandrographolide has a significant level of α-amylase inhibition activity. The ab initio DFT theory of DFT-B3LYP/6-311++ G(d,p) basis set technique was used for theoretical studies and comparison with the three experimental spectral studies such as 1H, 13C NMR, FTIR and UV-visible methods. When compared to the theoretical computational density functional theory (DFT) using Gaussian 9.0, the results have shown that the investigated compounds are potential therapeutic leads for in vitro biological and in silico molecular docking utilizing auto dock vina 4.2. Based on the results, it is confirmed that compound neoandrographolide would be most effective against α-amylase inhibitor activities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Mekala and T.R.G.K. Murthy, J. Pharmacogn. Phytochem., 9, 1031 (2020); https://doi.org/10.22271/phyto.2020.v9.i3q.11428
- A.H. Gilani and Atta-ur-Rahman, J. Ethnopharmacol., 100, 43 (2005); https://doi.org/10.1016/j.jep.2005.06.001
- I. Giannenas, E. Sidiropoulou, E. Bonos, E. Christaki and P. Florou-Paneri, Phytomed. Plus, 1, 100029 (2021); https://doi.org/10.1016/j.phyplu.2021.100029
- K. Anbarasu, K.K. Manisenthil and S. Ramachandran, Asian Pac. J. Trop. Med., 4, 819 (2011); https://doi.org/10.1016/S1995-7645(11)60201-0
- T. Yang, H.-X. Shi, Z.-T. Wang and C.-H. Wang, Planta Med., 76, 1698 (2010); https://doi.org/10.1055/s-0030-1249876
- P.H. Pfisterer, J.M. Rollinger, L. Schyschka, A. Rudy, A.M. Vollmar and H. Stuppner, Planta Med., 76, 1698 (2010); https://doi.org/10.1055/s-0030-1249876
- T. Yang, H. Shi, Z. Wang and C. Wang, Phytother. Res., 27, 618 (2013); https://doi.org/10.1002/ptr.4771
- J. Liu, Z.-T. Wang and L.-L. Ji, Am. J. Chin. Med., 35, 317 (2007); https://doi.org/10.1142/S0192415X07004849
- S.P. Adiguna, J.A. Panggabean, A. Atikana, F. Untari, F. Izzati, A. Bayu, A. Rosyidah, S.I. Rahmawati and M.Y. Putra, Pharmaceuticals, 14, 1102 (2021); https://doi.org/10.3390/ph14111102
- Y. Koteswara Rao, G. Vimalamma, C. Venkata Rao and Y.-M. Tzeng, Phytochemistry, 65, 2317 (2004); https://doi.org/10.1016/j.phytochem.2004.05.008
- G.R. Mallavarapu, K.V. Syamasundar, S. Ramesh and B.R.R. Rao, Nat. Prod. Commun., 7, 223 (2012); https://doi.org/10.1177/1934578X1200700228
- J.G. Millar, J. Nat. Prod., 61, 1025 (1998); https://doi.org/10.1021/np9800699
- Y. Matsuo and Y. Mimaki, Phytochemistry, 77, 304 (2012); https://doi.org/10.1016/j.phytochem.2012.02.007
- C.K. Kokate, Preliminary Phytochemical Analysis, Practical Pharmaco-gnosy, Vallabh Prakashan: New Delhi, edn. 1 (1986).
- P. Kamalarajan, S. Muthuraman, M.R. Ganesh and M.F. Valan, European J. Med. Plants, 30, 1 (2020); https://doi.org/10.9734/ejmp/2019/v30i430187
- H. Wang, L. Guo, H. Zuo, L. Wang, X. Guo, Z. Kang, Z.Y. Li, L. Jiao and E. Hao, Eur. J. Org. Chem., 27, e202400660 (2024); https://doi.org/10.1002/ejoc.202400660
- J.I. Ahamed, F. K, A.V. Priya, J. Prema Kumari, P. Kamalarajan, R.P. Steiny and B. Venkatadri, J. Mol. Struct., 1252, 132186 (2022); https://doi.org/10.1016/j.molstruc.2021.132186
- J.I. Ahamed, G.R. Ramkumaar, P. Kamalarajan, K. Narendran, M.F. Valan, T. Sundareswaran, T.A. Sundaravadivel, B. Venkatadri and S. Bharathi, J. Mol. Struct., 1248, 131418 (2022); https://doi.org/10.1016/j.molstruc.2021.131418
- H.B. Schlegel, J. Comput. Chem., 3, 214 (1982); https://doi.org/10.1002/jcc.540030212
- N. Subramanian, N. Sundaraganesan, S. Sudha, V. Aroulmoji, G.D. Sockalingam and M. Bergamin, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 1058 (2011); https://doi.org/10.1016/j.saa.2010.12.049
- J.I. Ahamed, M.F. Valan, K. Pandurengan, P. Agastian, B. Venkatadri, M.R. Rameshkumar and K. Narendran, Res. Chem. Intermed., 47, 759 (2021); https://doi.org/10.1007/s11164-020-04297-3
- J. Foresman and E. Frish, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh. edn. (1996).
- P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 270 (1985); https://doi.org/10.1063/1.448799
- J. Zhao, Y. Zhang and L. Zhu, J. Mol. Struct. THEOCHEM, 671, 179 (2004); https://doi.org/10.1016/j.theochem.2003.10.065
- R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088
- R.J. Ruch, S.J. Cheng and J.E. Klaunig, Carcinogenesis, 10, 1003 (1989); https://doi.org/10.1093/carcin/10.6.1003
- B. Venkatadri, A. Khusro, C. Aarti, M.R. Rameshkumar and P. Agastian, Asian Pac. J. Trop. Biomed., 7, 782 (2017); https://doi.org/10.1016/j.apjtb.2017.08.003
- G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, J. Comput. Chem., 19, 1639 (1998); https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:: AID-JCC10>3.0.CO;2-B
- BIOVIA Discovery Studio Visualizer, Accelrys Software Inc. Discovery Studio Visualizer (2005).
- P.K. Singh, T. Hasan and N. Misra, J. Chem., 6, 183 (2009); https://doi.org/10.1155/2009/369569
- K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
- A. Rauk, Orbital Interaction Theory of Organic Chemistry. John Wiley & Sons, edn. 2 (2004).
- A. Teimouri, A.N. Chermahini, K. Taban and H.A. Dabbagh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 72, 369 (2009); https://doi.org/10.1016/j.saa.2008.10.006
- E. Eroglu and H. Türkmen, J. Mol. Graph. Model., 26, 701 (2007); https://doi.org/10.1016/j.jmgm.2007.03.015
- G. Schmidtke, B. Kalveram and M. Groettrup, FEBS Lett., 583, 591 (2009); https://doi.org/10.1016/j.febslet.2009.01.006
- N. Rani, A. Aichem, G. Schmidtke, S.G. Kreft and M. Groettrup, Nat. Commun., 3, (2012); https://doi.org/10.1038/ncomms1752
- M.S. Hipp, B. Kalveram, S. Raasi, M. Groettrup and G. Schmidtke, Mol. Cell. Biol., 25, 3483 (2005); https://doi.org/10.1128/MCB.25.9.3483-3491.2005
- Y.C. Liu, J. Pan, C. Zhang, W. Fan, M. Collinge, J.R. Bender and S.M. Weissman, Proc. Natl. Acad. Sci. USA, 96, 4313 (1999); https://doi.org/10.1073/pnas.96.8.4313
- C.G.L. Lee, J. Ren, I.S.Y. Cheong, K.H.K. Ban, L.L.P.J. Ooi, S. Yong Tan, A. Kan, I. Nuchprayoon, R. Jin, K.-H. Lee, M. Choti and L.A. Lee, Oncogene, 22, 2592 (2003); https://doi.org/10.1038/sj.onc.1206337
References
P. Mekala and T.R.G.K. Murthy, J. Pharmacogn. Phytochem., 9, 1031 (2020); https://doi.org/10.22271/phyto.2020.v9.i3q.11428
A.H. Gilani and Atta-ur-Rahman, J. Ethnopharmacol., 100, 43 (2005); https://doi.org/10.1016/j.jep.2005.06.001
I. Giannenas, E. Sidiropoulou, E. Bonos, E. Christaki and P. Florou-Paneri, Phytomed. Plus, 1, 100029 (2021); https://doi.org/10.1016/j.phyplu.2021.100029
K. Anbarasu, K.K. Manisenthil and S. Ramachandran, Asian Pac. J. Trop. Med., 4, 819 (2011); https://doi.org/10.1016/S1995-7645(11)60201-0
T. Yang, H.-X. Shi, Z.-T. Wang and C.-H. Wang, Planta Med., 76, 1698 (2010); https://doi.org/10.1055/s-0030-1249876
P.H. Pfisterer, J.M. Rollinger, L. Schyschka, A. Rudy, A.M. Vollmar and H. Stuppner, Planta Med., 76, 1698 (2010); https://doi.org/10.1055/s-0030-1249876
T. Yang, H. Shi, Z. Wang and C. Wang, Phytother. Res., 27, 618 (2013); https://doi.org/10.1002/ptr.4771
J. Liu, Z.-T. Wang and L.-L. Ji, Am. J. Chin. Med., 35, 317 (2007); https://doi.org/10.1142/S0192415X07004849
S.P. Adiguna, J.A. Panggabean, A. Atikana, F. Untari, F. Izzati, A. Bayu, A. Rosyidah, S.I. Rahmawati and M.Y. Putra, Pharmaceuticals, 14, 1102 (2021); https://doi.org/10.3390/ph14111102
Y. Koteswara Rao, G. Vimalamma, C. Venkata Rao and Y.-M. Tzeng, Phytochemistry, 65, 2317 (2004); https://doi.org/10.1016/j.phytochem.2004.05.008
G.R. Mallavarapu, K.V. Syamasundar, S. Ramesh and B.R.R. Rao, Nat. Prod. Commun., 7, 223 (2012); https://doi.org/10.1177/1934578X1200700228
J.G. Millar, J. Nat. Prod., 61, 1025 (1998); https://doi.org/10.1021/np9800699
Y. Matsuo and Y. Mimaki, Phytochemistry, 77, 304 (2012); https://doi.org/10.1016/j.phytochem.2012.02.007
C.K. Kokate, Preliminary Phytochemical Analysis, Practical Pharmaco-gnosy, Vallabh Prakashan: New Delhi, edn. 1 (1986).
P. Kamalarajan, S. Muthuraman, M.R. Ganesh and M.F. Valan, European J. Med. Plants, 30, 1 (2020); https://doi.org/10.9734/ejmp/2019/v30i430187
H. Wang, L. Guo, H. Zuo, L. Wang, X. Guo, Z. Kang, Z.Y. Li, L. Jiao and E. Hao, Eur. J. Org. Chem., 27, e202400660 (2024); https://doi.org/10.1002/ejoc.202400660
J.I. Ahamed, F. K, A.V. Priya, J. Prema Kumari, P. Kamalarajan, R.P. Steiny and B. Venkatadri, J. Mol. Struct., 1252, 132186 (2022); https://doi.org/10.1016/j.molstruc.2021.132186
J.I. Ahamed, G.R. Ramkumaar, P. Kamalarajan, K. Narendran, M.F. Valan, T. Sundareswaran, T.A. Sundaravadivel, B. Venkatadri and S. Bharathi, J. Mol. Struct., 1248, 131418 (2022); https://doi.org/10.1016/j.molstruc.2021.131418
H.B. Schlegel, J. Comput. Chem., 3, 214 (1982); https://doi.org/10.1002/jcc.540030212
N. Subramanian, N. Sundaraganesan, S. Sudha, V. Aroulmoji, G.D. Sockalingam and M. Bergamin, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 1058 (2011); https://doi.org/10.1016/j.saa.2010.12.049
J.I. Ahamed, M.F. Valan, K. Pandurengan, P. Agastian, B. Venkatadri, M.R. Rameshkumar and K. Narendran, Res. Chem. Intermed., 47, 759 (2021); https://doi.org/10.1007/s11164-020-04297-3
J. Foresman and E. Frish, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh. edn. (1996).
P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 270 (1985); https://doi.org/10.1063/1.448799
J. Zhao, Y. Zhang and L. Zhu, J. Mol. Struct. THEOCHEM, 671, 179 (2004); https://doi.org/10.1016/j.theochem.2003.10.065
R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088
R.J. Ruch, S.J. Cheng and J.E. Klaunig, Carcinogenesis, 10, 1003 (1989); https://doi.org/10.1093/carcin/10.6.1003
B. Venkatadri, A. Khusro, C. Aarti, M.R. Rameshkumar and P. Agastian, Asian Pac. J. Trop. Biomed., 7, 782 (2017); https://doi.org/10.1016/j.apjtb.2017.08.003
G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, J. Comput. Chem., 19, 1639 (1998); https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:: AID-JCC10>3.0.CO;2-B
BIOVIA Discovery Studio Visualizer, Accelrys Software Inc. Discovery Studio Visualizer (2005).
P.K. Singh, T. Hasan and N. Misra, J. Chem., 6, 183 (2009); https://doi.org/10.1155/2009/369569
K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
A. Rauk, Orbital Interaction Theory of Organic Chemistry. John Wiley & Sons, edn. 2 (2004).
A. Teimouri, A.N. Chermahini, K. Taban and H.A. Dabbagh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 72, 369 (2009); https://doi.org/10.1016/j.saa.2008.10.006
E. Eroglu and H. Türkmen, J. Mol. Graph. Model., 26, 701 (2007); https://doi.org/10.1016/j.jmgm.2007.03.015
G. Schmidtke, B. Kalveram and M. Groettrup, FEBS Lett., 583, 591 (2009); https://doi.org/10.1016/j.febslet.2009.01.006
N. Rani, A. Aichem, G. Schmidtke, S.G. Kreft and M. Groettrup, Nat. Commun., 3, (2012); https://doi.org/10.1038/ncomms1752
M.S. Hipp, B. Kalveram, S. Raasi, M. Groettrup and G. Schmidtke, Mol. Cell. Biol., 25, 3483 (2005); https://doi.org/10.1128/MCB.25.9.3483-3491.2005
Y.C. Liu, J. Pan, C. Zhang, W. Fan, M. Collinge, J.R. Bender and S.M. Weissman, Proc. Natl. Acad. Sci. USA, 96, 4313 (1999); https://doi.org/10.1073/pnas.96.8.4313
C.G.L. Lee, J. Ren, I.S.Y. Cheong, K.H.K. Ban, L.L.P.J. Ooi, S. Yong Tan, A. Kan, I. Nuchprayoon, R. Jin, K.-H. Lee, M. Choti and L.A. Lee, Oncogene, 22, 2592 (2003); https://doi.org/10.1038/sj.onc.1206337