Copyright (c) 2024 Pushpa N. Awanti, M.V. Murugendrappa, Sharanappa Chapi, Shridhar N. Mathad, R.B. Konda, Shivraj G. Gounhalli
This work is licensed under a Creative Commons Attribution 4.0 International License.
AC Conductivity, Dielectric and Structural Properties of Co0.6Zn0.4-xMgxFe2O4 Co-Zn Spinel Nano Ferrites Prepared using Sol-gel Autocombustion Method
Corresponding Author(s) : Shivraj G. Gounhalli
Asian Journal of Chemistry,
Vol. 36 No. 12 (2024): Vol 36 Issue 12, 2024
Abstract
This study examined the structural, morphological, dielectric and AC conductivity properties of CoZnMg ferrite samples (Co0.6Zn0.4-xMgxFe2O4) with x = 0.00, 0.08, 0.16, 0.24, 0.32, 0.40. The sol-gel autocombustion method was used to synthesize the CoZnMg ferrite samples. The produced samples crystallize in the cubic spinel structure, according to an XRD analysis of the structural characteristics. The highly crystalline single-phase cubic spinel structure with a distinct peak in the (311) plane has been confirmed by XRD studies. The diameters of the crystallites have fluctuated between 24.92 and 9.80 nm. SEM, EDX and FTIR used to examine the morphological and elemental characteristics of the samples. According to FE-SEM, adding magnesium to the current ferrite system resulted in the loss of the porous gel structure. According to the relative stoichiometry of the Mg-substituted CoZn ferrite, the EDAX analysis verified the presence of Co, Zn, Mg and O. The investigated samples may be appropriate for a variety of uses, as indicated by the consistent conductivity at low frequencies. Within the frequency range of 100 to 5 MHz, the room temperature, electrical and dielectric properties were examined. The quantity of magnesium dopants and the microstructural features were related to the obtained results. The dielectric characteristics (ε′ and ε″) of the ferrites gradually decreased with frequency, even at higher frequencies. The samples exhibited interfacial polarization, which led to normal dielectric characteristics in line with the Maxwell-Wagner model.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.F. Shaikh, M. Ubaidullah, R.S. Mane and A.M. Al-Enizi, Types, Synthesis Methods and Applications of Ferrites, In: Spinel Ferrite Nanostructures for Energy Storage Devices, Elsevier, pp. 51-82 (2020).
- A. Faraz and N.M. Ahmad, Adv. Appl. Ceramics, 111, 381 (2012); https://doi.org/10.1179/1743676112Y.0000000013
- A. Goldman, Handbook of Modern Ferromagnetic Materials, Kluwer Academic Publishers, Boston, USA (1999).
- S. Gautam, R. Charak, S. Garg, N. Goyal, S. Chakraverty, K.H. Chae and Y. Kim, J. Magn. Magn. Mater., 593, 171867 (2024); https://doi.org/10.1016/j.jmmm.2024.171867
- A. Vedrtnam, K. Kalauni, S. Dubey and A. Kumar, AIMS Mater. Sci., 7, 800 (2020); https://doi.org/10.3934/matersci.2020.6.800
- T. Dippong, F. Goga, E.-A. Levei and O. Cadar, J. Solid State Chem., 275, 159 (2019); https://doi.org/10.1016/j.jssc.2019.04.011
- D.Q. Han, D.H. Yin, J. Ma, F. Wang and C.L. Li, Ceram. Int., 44, 22997 (2018); https://doi.org/10.1016/j.ceramint.2018.09.099
- M.A. Almessiere, Y. Slimani, S. Guner, M. Sertkol, A. Demir Korkmaz, S.E. Shirsath and A. Baykal, Ultrason. Sonochem., 58, 104654 (2019); https://doi.org/10.1016/j.ultsonch.2019.104654
- R. Qindeel and N.H. Alonizan, Curr. Appl. Phys., 18, 519 (2018); https://doi.org/10.1016/j.cap.2018.03.004
- I.J.C. Lynda, M. Durka, A. Dinesh, A. Manikandan, S.K. Jaganathan, A. Baykal and S.A. Antony, J. Supercond. Nov. Magn., 31, 3637 (2018); https://doi.org/10.1007/s10948-018-4623-x
- S. Asiri, M. Sertkol, S. Guner, H. Gungunes, K.M. Batoo, T.A. Saleh, H. Sozeri, M.A. Almessiere, A. Manikandan and A. Baykal, Ceram. Int., 44, 5751 (2018); https://doi.org/10.1016/j.ceramint.2017.12.233
- A. Silambarasu, A. Manikandan and K. Balakrishnan, J. Supercond. Nov. Magn., 30, 2631 (2017); https://doi.org/10.1007/s10948-017-4061-1
- G. Padmapriya, A. Manikandan, V. Krishnasamy, S.K. Jaganathan and S.A. Antony, J. Supercond. Nov. Magn., 29, 2141 (2016); https://doi.org/10.1007/s10948-016-3527-x
- A.A. Ati, A.H. Abdalsalam and A.S. Hasan, J. Mater. Sci. Mater. Electron., 32, 3019 (2021); https://doi.org/10.1007/s10854-020-05053-4
- L. Sun, R. Zhang, Q. Ni, E. Cao, W. Hao, Y. Zhang and L. Ju, Physica B, 545, 4 (2018); https://doi.org/10.1016/j.physb.2018.05.030
- X. Zhao, A. Sun, W. Zhang, L. Yu, Z. Zuo, N. Suo, X. Pan and Y. Han, Mod. Phys. Lett. B, 34, 2050041 (2020); https://doi.org/10.1142/S0217984920500414
- D. Chahar, P. Thakur, A.-C.A. Sun and A. Thakur, J. Mater. Sci. Mater. Electron., 34, 901 (2023); https://doi.org/10.1007/s10854-023-10273-5
- B. Hasanain, Mater. Res. Express, 10, 045004 (2023); https://doi.org/10.1088/2053-1591/acca6b
- S. Hasan and B. Azhdar, J. Phys. Condens. Matter, 35, 425303 (2023); https://doi.org/10.1088/1361-648X/ace6ed
- B. Ingale, D. Nadargi, J. Nadargi, R. Suryawanshi, H. Shaikh, M.A. Alam, M.S. Tamboli and S.S. Suryavanshi, ACS Omega, 8, 30508 (2023); https://doi.org/10.1021/acsomega.3c03757
- H.M.H. Zakaly, S.A.M. Issa, H.A. Saudi, G.A. Alharshan, M.A.M. Uosif and A.M.A. Henaish, Sci. Rep., 12, 15495 (2022); https://doi.org/10.1038/s41598-022-17311-y
- K.I. Hadjiivanov, D.A. Panayotov, M.Y. Mihaylov, E.Z. Ivanova, K.K. Chakarova, S.M. Andonova and N.L. Drenchev, Chem. Rev., 121, 1286 (2021); https://doi.org/10.1021/acs.chemrev.0c00487
- M. Hadi, K.M. Batoo, A. Chauhan, O.M. Aldossary, R. Verma and Y. Yang, Magnetochemistry, 7, 53 (2021); https://doi.org/10.3390/magnetochemistry7040053
- K.E. Rady, A.R.A. El-Salam, E.A. ELFadaly and M.H. Aly, Appl. Phys., A Mater. Sci. Process., 129, 245 (2023); https://doi.org/10.1007/s00339-023-06528-x
- M. Das, M.N.I. Khan, M.A. Matin and M.M. Uddin, J. Supercond. Nov. Magn., 32, 3569 (2019); https://doi.org/10.1007/s10948-019-5104-6
- S. Ramesh, B. Dhanalakshmi, B.C. Sekhar, P.S.V.S. Rao and B.P. Rao, Ceram. Int., 42, 9591 (2016); https://doi.org/10.1016/j.ceramint.2016.03.043
- K. Hussain, N. Amin and M.I. Arshad, Ceram. Int., 47, 3401 (2021); https://doi.org/10.1016/j.ceramint.2020.09.185
- S.S. Bellad, S.C. Watawe and B.K. Chougule, Mater. Res. Bull., 34, 1099 (1999); https://doi.org/10.1016/S0025-5408(99)00107-5
- E. Melagiriyappa, H.S. Jayanna and B.K. Chougule, Mater. Chem. Phys., 112, 68 (2008); https://doi.org/10.1016/j.matchemphys.2008.05.014
- H.-I. Hsiang, C.-S. Hsi, C.-Y. Tsai and L.-T. Mei, Ceram. Int., 41, 4140 (2015); https://doi.org/10.1016/j.ceramint.2014.11.110
References
S.F. Shaikh, M. Ubaidullah, R.S. Mane and A.M. Al-Enizi, Types, Synthesis Methods and Applications of Ferrites, In: Spinel Ferrite Nanostructures for Energy Storage Devices, Elsevier, pp. 51-82 (2020).
A. Faraz and N.M. Ahmad, Adv. Appl. Ceramics, 111, 381 (2012); https://doi.org/10.1179/1743676112Y.0000000013
A. Goldman, Handbook of Modern Ferromagnetic Materials, Kluwer Academic Publishers, Boston, USA (1999).
S. Gautam, R. Charak, S. Garg, N. Goyal, S. Chakraverty, K.H. Chae and Y. Kim, J. Magn. Magn. Mater., 593, 171867 (2024); https://doi.org/10.1016/j.jmmm.2024.171867
A. Vedrtnam, K. Kalauni, S. Dubey and A. Kumar, AIMS Mater. Sci., 7, 800 (2020); https://doi.org/10.3934/matersci.2020.6.800
T. Dippong, F. Goga, E.-A. Levei and O. Cadar, J. Solid State Chem., 275, 159 (2019); https://doi.org/10.1016/j.jssc.2019.04.011
D.Q. Han, D.H. Yin, J. Ma, F. Wang and C.L. Li, Ceram. Int., 44, 22997 (2018); https://doi.org/10.1016/j.ceramint.2018.09.099
M.A. Almessiere, Y. Slimani, S. Guner, M. Sertkol, A. Demir Korkmaz, S.E. Shirsath and A. Baykal, Ultrason. Sonochem., 58, 104654 (2019); https://doi.org/10.1016/j.ultsonch.2019.104654
R. Qindeel and N.H. Alonizan, Curr. Appl. Phys., 18, 519 (2018); https://doi.org/10.1016/j.cap.2018.03.004
I.J.C. Lynda, M. Durka, A. Dinesh, A. Manikandan, S.K. Jaganathan, A. Baykal and S.A. Antony, J. Supercond. Nov. Magn., 31, 3637 (2018); https://doi.org/10.1007/s10948-018-4623-x
S. Asiri, M. Sertkol, S. Guner, H. Gungunes, K.M. Batoo, T.A. Saleh, H. Sozeri, M.A. Almessiere, A. Manikandan and A. Baykal, Ceram. Int., 44, 5751 (2018); https://doi.org/10.1016/j.ceramint.2017.12.233
A. Silambarasu, A. Manikandan and K. Balakrishnan, J. Supercond. Nov. Magn., 30, 2631 (2017); https://doi.org/10.1007/s10948-017-4061-1
G. Padmapriya, A. Manikandan, V. Krishnasamy, S.K. Jaganathan and S.A. Antony, J. Supercond. Nov. Magn., 29, 2141 (2016); https://doi.org/10.1007/s10948-016-3527-x
A.A. Ati, A.H. Abdalsalam and A.S. Hasan, J. Mater. Sci. Mater. Electron., 32, 3019 (2021); https://doi.org/10.1007/s10854-020-05053-4
L. Sun, R. Zhang, Q. Ni, E. Cao, W. Hao, Y. Zhang and L. Ju, Physica B, 545, 4 (2018); https://doi.org/10.1016/j.physb.2018.05.030
X. Zhao, A. Sun, W. Zhang, L. Yu, Z. Zuo, N. Suo, X. Pan and Y. Han, Mod. Phys. Lett. B, 34, 2050041 (2020); https://doi.org/10.1142/S0217984920500414
D. Chahar, P. Thakur, A.-C.A. Sun and A. Thakur, J. Mater. Sci. Mater. Electron., 34, 901 (2023); https://doi.org/10.1007/s10854-023-10273-5
B. Hasanain, Mater. Res. Express, 10, 045004 (2023); https://doi.org/10.1088/2053-1591/acca6b
S. Hasan and B. Azhdar, J. Phys. Condens. Matter, 35, 425303 (2023); https://doi.org/10.1088/1361-648X/ace6ed
B. Ingale, D. Nadargi, J. Nadargi, R. Suryawanshi, H. Shaikh, M.A. Alam, M.S. Tamboli and S.S. Suryavanshi, ACS Omega, 8, 30508 (2023); https://doi.org/10.1021/acsomega.3c03757
H.M.H. Zakaly, S.A.M. Issa, H.A. Saudi, G.A. Alharshan, M.A.M. Uosif and A.M.A. Henaish, Sci. Rep., 12, 15495 (2022); https://doi.org/10.1038/s41598-022-17311-y
K.I. Hadjiivanov, D.A. Panayotov, M.Y. Mihaylov, E.Z. Ivanova, K.K. Chakarova, S.M. Andonova and N.L. Drenchev, Chem. Rev., 121, 1286 (2021); https://doi.org/10.1021/acs.chemrev.0c00487
M. Hadi, K.M. Batoo, A. Chauhan, O.M. Aldossary, R. Verma and Y. Yang, Magnetochemistry, 7, 53 (2021); https://doi.org/10.3390/magnetochemistry7040053
K.E. Rady, A.R.A. El-Salam, E.A. ELFadaly and M.H. Aly, Appl. Phys., A Mater. Sci. Process., 129, 245 (2023); https://doi.org/10.1007/s00339-023-06528-x
M. Das, M.N.I. Khan, M.A. Matin and M.M. Uddin, J. Supercond. Nov. Magn., 32, 3569 (2019); https://doi.org/10.1007/s10948-019-5104-6
S. Ramesh, B. Dhanalakshmi, B.C. Sekhar, P.S.V.S. Rao and B.P. Rao, Ceram. Int., 42, 9591 (2016); https://doi.org/10.1016/j.ceramint.2016.03.043
K. Hussain, N. Amin and M.I. Arshad, Ceram. Int., 47, 3401 (2021); https://doi.org/10.1016/j.ceramint.2020.09.185
S.S. Bellad, S.C. Watawe and B.K. Chougule, Mater. Res. Bull., 34, 1099 (1999); https://doi.org/10.1016/S0025-5408(99)00107-5
E. Melagiriyappa, H.S. Jayanna and B.K. Chougule, Mater. Chem. Phys., 112, 68 (2008); https://doi.org/10.1016/j.matchemphys.2008.05.014
H.-I. Hsiang, C.-S. Hsi, C.-Y. Tsai and L.-T. Mei, Ceram. Int., 41, 4140 (2015); https://doi.org/10.1016/j.ceramint.2014.11.110