Copyright (c) 2025 Meher Bhagwagar; Brijesh Singh, Sreela Dasgupta, Onkar Lotlikar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Anthocyanin-Based Photosensitizers: A Comparative Study of Natural Dyes in Enhancing Third-Generation Solar Cell Efficiency
Corresponding Author(s) : Onkar Lotlikar
Asian Journal of Chemistry,
Vol. 37 No. 5 (2025): Vol 37 Issue 5, 2025
Abstract
This review examines third-generation dye-sensitized solar cells (DSSCs), focusing on natural dyes due to their sustainability, non-toxicity and cost-effectiveness. It explores key natural dyes–chlorophyll and anthocyanin–alongside others like betalain, sepia melanin, lawsone, curcumin, clathrin and carminic acid. The extraction techniques from plant and animal sources, along with variables like pH, temperature, solvent selection and the source of extraction that affect dye adherence on the photoanode are also examined, evaluating the effects of dye concentration and the optimum conditions for dye application. The benefits and limitations of natural dyes in DSSCs for solar energy applications also addressed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Goetzberger, J. Luther and G. Willeke, Sol. Energy Mater. Sol. Cells, 74, 1 (2002); https://doi.org/10.1016/S0927-0248(02)00042-9
- A. Mohammad Bagher, Am. J. Opt. Photonics, 3, 94 (2015); https://doi.org/10.11648/j.ajop.20150305.17
- B. Kuswandi, T.S. Jayus, T.S. Larasati, A. Abdullah and L.Y. Heng, Food Anal. Methods, 5, 881 (2012); https://doi.org/10.1007/s12161-011-9326-x
- T. Soga, Fundamentals of Solar Cell, In: Nanostructured Materials for Solar Energy Conversion, Elsevier, Chap. 1, pp. 3-43 (2006); https://doi.org/10.1016/B978-044452844-5/50002-0
- T. Markvart and L. Castañer, in eds.: S.A. Kalogirou, Principles of Solar Cell Operation, In: McEvoy's Handbook of Photovoltaics, Fundamentals and Applications, Elsevier Ltd., edn. 3, Chap. I-1-A, pp. 3-28 (2018); https://doi.org/10.1016/B978-0-12-809921-6.00001-X
- F. Liu, W. Wang, L. Wang and G. Yang, Nanomater. Energy, 2, 3 (2013); https://doi.org/10.1680/nme.12.00024
- A. Riverola, A. Vossier and D. Chemisana, Fundamentals of Solar Cells, In: Nanomaterials for Solar Cell Applications, Elsevier Inc., Chap. 1, pp. 3-33 (2019); https://doi.org/10.1016/B978-0-12-813337-8.00001-1
- T.D. Raju, V. Murugadoss, K.A. Nirmal, T.D. Dongale, A.V. Kesavan and T.G. Kim, Adv. Powder Mater., 4, 100275 (2025); https://doi.org/10.1016/j.apmate.2025.100275
- N. Shah, A.A. Shah, P.K. Leung, S. Khan, K. Sun, X. Zhu and Q. Liao, Processes, 11, 1852 (2023); https://doi.org/10.3390/pr11061852
- H.J. Snaith, Adv. Funct. Mater., 20, 13 (2010); https://doi.org/10.1002/adfm.200901476
- G. Boschloo, Front Chem., 7, 77 (2019); https://doi.org/10.3389/fchem.2019.00077
- S. Dai, J. Weng, Y. Sui, C. Shi, Y. Huang, S. Chen, X. Pan, X. Fang, L. Hu, F. Kong and K. Wang, Sol. Energy Mater. Sol. Cells, 84, 125 (2004); https://doi.org/10.1016/j.solmat.2004.03.002
- M.B. Hayat, D. Ali, K.C. Monyake, L. Alagha and N. Ahmed, Int. J. Energy Res., 43, 1049 (2019); https://doi.org/10.1002/er.4252
- M.A.M. Al-Alwani, A.B. Mohamad, N.A. Ludin, A.A.H. Kadhum and K. Sopian, Renew. Sustain. Energy Rev., 65, 183 (2016); https://doi.org/10.1016/j.rser.2016.06.045
- E.O. Alegbe and T.O. Uthman, Heliyon, 10, e33646 (2024); https://doi.org/10.1016/j.heliyon.2024.e33646
- S. Sattar, J. Chem. Educ., 96, 1124 (2019); https://doi.org/10.1021/acs.jchemed.8b00845
- D. Jacquemin, E.A. Perpete, I. Ciofini and C. Adamo, Acc. Chem. Res., 42, 326 (2009); https://doi.org/10.1021/ar800163d
- R. Lopez-Delgado, M. Tostado-Plascencia, M.E. Álvarez-Ramos and A. Ayón, Microelectron. Eng., 216, 111047 (2019); https://doi.org/10.1016/j.mee.2019.111047
- U. Nithiyanantham, A. Ramadoss and S. Kundu, RSC Adv., 4, 35659 (2014); https://doi.org/10.1039/C4RA06226D
- M.S. Ahmad, A.K. Pandey and N.A. Rahim, Renew. Sustain. Energy Rev., 77, 89 (2017); https://doi.org/10.1016/j.rser.2017.03.129
- A.F. de S. Costa, J.D.P. de Amorim, F.C.G. Almeida, I.D. de Lima, S.C. de Paiva, M.A.V. Rocha, G.M. Vinhas and L.A. Sarubbo, Int. J. Biol. Macromol., 121, 580 (2019); https://doi.org/10.1016/j.ijbiomac.2018.10.066
- T. Rajaramanan, F.H. Gourji, Y. Elilan, S. Yohi, M. Senthilnanthanan, P. Ravirajan and D. Velauthapillai, Sci. Rep., 13, 13844 (2023); https://doi.org/10.1038/s41598-023-40437-6
- M.R. Aziza, E. Maulana and P. Mudjirahardjo, Indones. J. Electr. Eng. Comput. Sci., 29, 1290 (2023); https://doi.org/10.11591/ijeecs.v29.i3.pp1290-1299
- L. Michels, A. Richter, R.K. Chellappan, H.I. Røst, A. Behsen, K.H. Wells, L. Leal, V. Santana, R. Blawid, G.J. da Silva, S.P. Cooil, J.W. Wells and S. Blawid, RSC Adv., 11, 14169 (2021); https://doi.org/10.1039/D0RA08474C
- N. Yazie, D. Worku and A. Reda, Mater. Renew. Sustain. Energy, 5, 13 (2016); https://doi.org/10.1007/s40243-016-0077-x
- A.O.M. Maka and J.M. Alabid, Clean Energy, 6, 476 (2022); https://doi.org/10.1093/ce/zkac023
- L.M. Shaker, A.A. Al-Amiery, M.M. Hanoon, W.K. Al-Azzawi and A.A.H. Kadhum, Sustain. Energy Res., 11, 6 (2024); https://doi.org/10.1186/s40807-024-00100-8
- S. Duan, Q. Zhou, A. Li and X.F. Wang, Sol. RRL, 4, 2000162 (2020); https://doi.org/10.1002/solr.202000162
- D. Sinha, D. De and A. Ayaz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 193, 467 (2018); https://doi.org/10.1016/j.saa.2017.12.058
- Y. Li, W. Zhao, M. Li, G. Chen, X.F. Wang, X. Fu, O. Kitao, H. Tamiaki, K. Sakai, T. Ikeuchi and S.I. Sasaki, Chem. Eur. J., 23, 10886 (2017); https://doi.org/10.1002/chem.201701858
- S.K. Ravi, V.S. Udayagiri, L. Suresh, and S.C. Tan, Adv. Funct. Mater., 13, 1705305 (2018); https://doi.org/10.1002/adfm.201705305
- C. Medina-Armijo, I. Yousef, A. Berná, A. Puerta, A. Esteve-Núñez, M. Viñas and F.X. Prenafeta-Boldú, Front. Fungal Biol., 5, 13907724 (2024); https://doi.org/10.3389/ffunb.2024.1390724
- S.N. Meloan, L.S. Valentine and H. Puchtler, Histochem. Cell Biol., 27, 87 (1971); https://doi.org/10.1007/BF00284950
- A. Mbonyiryivuze, Z.Y. Nuru, B. Diop Ngom, B. Mwakikunga, S. Mokhotjwa Dhlamini, E. Park and M. Maaza, Am. J. Nanomater., 3, 22 (2015); https://doi.org/10.12691/ajn-3-1-3
- R. Xu, A. Gouda, M.F. Caso, F. Soavi and C. Santato, ACS Omega, 4, 12244 (2019); https://doi.org/10.1021/acsomega.9b01039
- M. Séquin-Prey, J. Chem. Educ., 58, 301 (1981); https://doi.org/10.1021/ed058p301
- D.Y. Goswami, S. Vijayaraghavan, S. Lu and G. Tamm, Sol. Energy, 76, 33 (2004); https://doi.org/10.1016/S0038-092X(03)00103-8
- M.G. Debije and P.P.C. Verbunt, Adv. Energy Mater., 2, 12 (2012); https://doi.org/10.1002/aenm.201100554
- A. Lim, P. Ekanayake, L.B.L. Lim and J.M.R.S. Bandara, Spectrochim. Acta A Mol. Biomol. Spectrosc., 167, 26 (2016); https://doi.org/10.1016/j.saa.2016.05.024
- R.A.M. Ali and N. Nayan, Int. J. Integr. Eng., 2, 55 (2010).
- W.H. Lai, Y.H. Su, L.G. Teoh and M.H. Hon, J. Photochem. Photobiol. Chem., 195, 307 (2008); https://doi.org/10.1016/j.jphotochem.2007.10.018
- A. Reda, S. Tadesse and T. Yohannes, J. Photon. Energy, 4, 043091 (2014); https://doi.org/10.1117/1.JPE.4.043091
- M. Isah Kimpa, M. Momoh, K. Uthman Isah, H. Nawawi Yahya and M. Muhammed Ndamitso, Mater. Sci. Appl., 3, 281 (2012); https://doi.org/10.4236/msa.2012.35041
- D. Tahir, W. Satriani, P.L. Gareso and B. Abdullah, J. Phys. Conf. Ser., 979, 012056 (2018); https://doi.org/10.1088/1742-6596/979/1/012056
- K.V. Vinutha, K.B. Naveen Kumar, M.K. Tejas, B.J. Kumar, D.S. Kumar and H.M. Mahesh, Imp. J. Interdiscip. Res., 2, 1011 (2016).
- S.A. Taya, H.S. El-Ghamri, T.M. El-Agez and M.S. Abdel-Latif, Br. J. Appl. Sci. Technol., 5, 380 (2015); https://doi.org/10.9734/BJAST/2015/13654
- J.M. Cole, G. Pepe, O.K. Al Bahri and C.B. Cooper, Chem. Rev., 119, 7279 (2019); https://doi.org/10.1021/acs.chemrev.8b00632
- S. Tadesse, A. Abebe, Y. Chebude, I.V. Garcia and T. Yohannes, J. Photon. Energy, 2, 027001 (2012); https://doi.org/10.1117/1.JPE.2.027001.
- A.H. Zyoud, F. Saleh, M.H. Helal, R. Shawahna and H.S. Hilal, J. Nanomater., 2018, 1 (2018); https://doi.org/10.1155/2018/2789616
- H. Munawaroh, G. Fadillah, L.N.M.Z. Saputri, Q.A. Hanif, R. Hidayat and S. Wahyuningsih, IOP Conf. Ser. Mater. Sci. Eng. 107, 012061 (2016); https://doi.org/10.1088/1757-899X/107/1/012061
- M. Ghosh, P. Chowdhury and A.K. Ray, Catalysts, 10, 917 (2020); https://doi.org/10.3390/catal10080917
- A.S. Polo and N.Y. Murakami Iha, Sol. Energy Mater. Sol. Cells, 90, 1936 (2006); https://doi.org/10.1016/j.solmat.2006.02.006
- M.R. Nishantha, Y.P.Y.P. Yapa and V.P.S. Perera, Proc. Tech. Sessisions, 28, 54 (2012).
- W. Ghann, H. Kang, T. Sheikh, S. Yadav, T. Chavez-Gil, F. Nesbitt and J. Uddin, Sci. Rep., 7, 41470 (2017); https://doi.org/10.1038/srep41470
- K. Wattananate, C. Thanachayanont and N. Tonanon, Sol. Energy, 107, 38 (2014); https://doi.org/10.1016/j.solener.2014.05.004
- I.C. Maurya, A.K. Neetu, A.K. Gupta, P. Srivastava and L. Bahadur, J. Sol. Energy Eng., 138, 051006 (2016); https://doi.org/10.1115/1.4034028
- A. Atli, A. Atilgan, C. Altinkaya, K. Ozel and A. Yildiz, Int. J. Energy Res., 43, 1 (2019); https://doi.org/10.1002/er.4538
- M. Hamadanian, J. Safaei-Ghomi, M. Hosseinpour, R. Masoomi and V. Jabbari, Mater. Sci. Semicond. Process., 27, 733 (2014); https://doi.org/10.1016/j.mssp.2014.08.017
- P. Chawla, A. Srivastava and M. Tripathi, Environ. Prog. Sustain. Energy, 38, 630 (2019); https://doi.org/10.1002/ep.12965
- H.J. Kim, Y.T. Bin, S.N. Karthick, K.V. Hemalatha, C.J. Raj, S. Venkatesan, S. Park and G. Vijayakumar, Int. J. Electrochem. Sci., 8, 6734 (2013); https://doi.org/10.1016/S1452-3981(23)14800-0
- W.A. Ayalew and D.W. Ayele, J. Sci. Adv. Mater. Devices, 1, 488 (2016); https://doi.org/10.1016/j.jsamd.2016.10.003
- I.C. Maurya, S. Singh, P. Srivastava, B. Maiti and L. Bahadur, Opt. Mater., 90, 273 (2019); https://doi.org/10.1016/j.optmat.2019.02.037
- K. Surana, M.G. Idris and B. Bhattacharya, Appl. Nanosci., 10, 3819 (2020); https://doi.org/10.1007/s13204-020-01452-5
- S. Madnasri, R.D.A. Wulandari, S. Hadi, I. Yulianti, S.S. Edi and D. Prastiyanto, Mater. Today Proc., 13, 246 (2019); https://doi.org/10.1016/j.matpr.2019.03.222
- A. Yuvapragasam, N. Muthukumarasamy, S. Agilan, D. Velauthapillai, T.S. Senthil and S. Sundaram, J. Photochem. Photobiol. B, 148, 223 (2015); https://doi.org/10.1016/j.jphotobiol.2015.04.017
- N. Saelim, R. Magaraphan and T. Sreethawong, Ceram. Int., 37, 659 (2011); https://doi.org/10.1016/j.ceramint.2010.09.001
- K. Wongcharee, V. Meeyoo and S. Chavadej, Sol. Energy Mater. Sol. Cells, 91, 566 (2007); https://doi.org/10.1016/j.solmat.2006.11.005
- K.H. Park, T.Y. Kim, S. Han, H.S. Ko, S.H. Lee, Y.M. Song, J.H. Kim and J.W. Lee, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128, 868 (2014); https://doi.org/10.1016/j.saa.2014.03.016
- H. Zhou, L. Wu, Y. Gao and T. Ma, J. Photochem. Photobiol. Chem., 219, 188 (2011); https://doi.org/10.1016/j.jphotochem.2011.02.008
- S. Sengupta and F. Würthner, Acc. Chem. Res., 46, 2498 (2013); https://doi.org/10.1021/ar400017u
- S.V. Zvezdina, M.B. Berezin and B.D. Berezin, Russ. J. Coord. Chem., 36, 711 (2010); https://doi.org/10.1134/S1070328410090125
- X.F. Wang and O. Kitao, Molecules, 17, 4484 (2012); https://doi.org/10.3390/molecules17044484
- G. Buscemi, D. Vona, M. Trotta, F. Milano and G.M. Farinola, Adv. Mater. Technol., 7, 2100245 (2022); https://doi.org/10.1002/admt.202100245
- W. Sang-aroon, S. Tontapha and V. Amornkitbamrung, in eds.: M. Soroush and K.K.S. Lau, Photovoltaic Performance of Natural Dyes for Dye-Sensitized Solar Cells: A Combined Experimental and Theoretical Study, In: Dye-Sensitized Solar Cells Mathematical Modeling, and Materials Design and Optimization, Academic Press, Chatp. 6, pp. 203-229 (2019).
- M.A.M. Al-Alwani, A.B. Mohamad, A.A.H. Kadhum, N.A. Ludin, N.E. Safie, M.Z. Razali, M. Ismail and K. Sopian, Int. J. Electrochem. Sci., 12, 747 (2017); https://doi.org/10.20964/2017.01.56
- H. Chang, H.M. Wu, T.L. Chen, K.D. Huang, C.S. Jwo and Y.J. Lo, J. Alloys Compd., 495, 606 (2010); https://doi.org/10.1016/j.jallcom.2009.10.057
- N.N.A. Hamid, S. Suhaimi and N.M. Yatim, AIP Conf. Proc., 1972, 030009 (2018); https://doi.org/10.1063/1.5041230
- A.K. Rajan and L. Cindrella, Opt. Mater., 88, 39 (2019); https://doi.org/10.1016/j.optmat.2018.11.016
- P. Sanjay, K. Deepa, J. Madhavan and S. Senthil, Opt. Mater., 83, 192 (2018); https://doi.org/10.1016/j.optmat.2018.06.011
- M.S. Abdel-Latif, M.B. Abuiriban, T.M. El-Agez and S.A. Taya, Int. J. Renew. Energy Res., 5, 294 (2015).
- A. Mbonyiryivuze, I. Omollo, B.D. Ngom, B. Mwakikunga, S.M. Dhlamini, E. Park and M. Maaza, Phys. Mater. Chem., 3, 1 (2015); https://doi.org/10.12691/pmc-3-2-2
- J.P. Rodríguez and M. Barrientos, J. Nat. Dyes, 45, 124 (2010).
- S.N. Yoganarasimhan, Medicinal Plants of India, Bangalore: Tanuja Press, vol. 1 (2002).
- J. Camacho and J. Sánchez, Int. J. Nat. Dyes, 35, 48 (2005).
- S.H. Aung, Y. Hao, T.Z. Oo and G. Boschloo, J. Photochem. Photobiol. Chem., 325, 1 (2016); https://doi.org/10.1016/j.jphotochem.2016.03.022
- M.A. Cousin, S.L. Gordon and K.J. Smillie, Methods Mol. Biol., 1847, 239 (2018); https://doi.org/10.1007/978-1-4939-8719-1_18
- P. Trihutomo, S. Soeparman, D. Widhiyanuriyawan and L. Yuliati, Int. J. Photoenergy, 2019, 4384728 (2019); https://doi.org/10.1155/2019/4384728
- D. Sinha, D. De and A. Ayaz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 193, 467 (2018); https://doi.org/10.1016/j.saa.2017.12.058
- K.E. Jasim, S. Cassidy, F.Z. Henari and A.A. Dakhel, J. Energy Power Eng., 11, 1 (2017); https://doi.org/10.17265/1934-8975/2017.06.006
- T.A. Ruhane, M.T. Islam, M.S. Rahaman, M.M.H. Bhuiyan, J.M.M. Islam, T.I. Bhuiyan, K.A. Khan and M.A. Khan, Sustain. Energy Technol. Assess., 20, 72 (2017); https://doi.org/10.1016/j.seta.2017.01.012
- M.K. Hossain, M.F. Pervez, M.N.H. Mia, A.A. Mortuza, M.S. Rahaman, M.R. Karim, J.M.M. Islam, F. Ahmed and M.A. Khan, Results Phys., 7, 1516 (2017); https://doi.org/10.1016/j.rinp.2017.04.011
- S. Ananth, P. Vivek, T. Arumanayagam and P. Murugakoothan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128, 420 (2014); https://doi.org/10.1016/j.saa.2014.02.169
- K. Jasim, Sains Malays., 41, 1011 (2012).
- S. Sathyajothi, R. Jayavel and A.C. Dhanemozhi, Mater. Today Proc., 4, 668 (2017); https://doi.org/10.1016/j.matpr.2017.01.071
- T.J. Abodunrin, O. Obafemi, A.O. Boyo, T. Adebayo and R. Jimoh, Adv. Mater. Phys. Chem., 5, 205 (2015); https://doi.org/10.4236/ampc.2015.56021
- A.S. Najm, N.A. Ludin, M.F. Abdullah, M.A. Almessiere, N.M. Ahmed and M.A.M. Al-Alwani, J. Mater. Sci. Mater. Electron., 31, 3564 (2020); https://doi.org/10.1007/s10854-020-02905-x
- Y. Jia, A. Cao, X. Bai, Z. Li, L. Zhang, N. Guo, J. Wei, K. Wang, H. Zhu, D. Wu and P.M. Ajayan, Nano Lett., 11, 1901 (2011); https://doi.org/10.1021/nl2002632
- R. Ramamoorthy, N. Radha, G. Maheswari, S. Anandan, S. Manoharan and R. Victor Williams, J. Appl. Electrochem., 46, 929 (2016); https://doi.org/10.1007/s10800-016-0974-9
- S.A. De Souza Farias, K.S. Da Costa and J.B.L. Martins, ACS Omega, 6, 8908 (2021); https://doi.org/10.1021/acsomega.0c06156
- G. Calogero, J.H. Yum, A. Sinopoli, G. Di Marco, M. Grätzel and M.K. Nazeeruddin, Sol. Energy, 86, 1563 (2012); https://doi.org/10.1016/j.solener.2012.02.018
- K.U. Isah, U. Ahmadu, A. Idris, M.I. Kimpa, U.E. Uno, M.M. Ndamitso and N. Alu, Mater. Renew. Sustain. Energy, 4, 5 (2015); https://doi.org/10.1007/s40243-014-0039-0
- H.E. Khoo, A. Azlan, S.T. Tang and S.M. Lim, Food Nutr. Res., 61, 1361779 (2017); https://doi.org/10.1080/16546628.2017.1361779
- A.R. Obasuyi, D. Glossman-Mitnik and N. Flores-Holguín, J. Comput. Electron., 18, 396 (2019); https://doi.org/10.1007/s10825-019-01331-5
- A. Houghton, I. Appelhagen and C. Martin, Plants, 10, 726 (2021); https://doi.org/10.3390/plants10040726
- C.R. Welch, Q. Wu and J.E. Simon, Curr. Anal. Chem., 4, 75 (2008); https://doi.org/10.2174/157341108784587795
- Y. Yan, Y. Zhang, Y. Zhao, F. Ding, Y. Lei, Y. Wang, J. Zhou and W. Kang, J. Mater. Sci., 60, 4975 (2025); https://doi.org/10.1007/s10853-025-10734-8
- Z. Xiao, Ming Li, M. Xu and Z. Lu, J. Phys. Chem. Solids, 59, 911 (1998); https://doi.org/10.1016/S0022-3697(98)00025-0
- A. Heidari, R. Teimuri-Mofrad and K.D. Safa, Appl. Organmet. Chem., 37, e7259 (2023); https://doi.org/10.1002/aoc.7259
- R. Ramamoorthy, K. Karthika, A.M. Dayana, G. Maheswari, N. Pavithra, V. Eswaramoorthi, S. Anandan and R.V. Williams, J. Mater. Sci.: Mater. Electron., 28, 13678 (2017); https://doi.org/10.1007/s10854-017-7211-0
- A.H. Ahliha, F. Nurosyid, A. Supriyanto and T. Kusumaningsih, J. Phys. Conf. Ser., 909, 012013 (2017); https://doi.org/10.1088/1742-6596/909/1/012013
- S.C. Ezike, C.N. Hyelnasinyi, M.A. Salawu, J.F. Wansah, A.N. Ossai and N.N. Agu, Surf. Interfaces, 22, 100882 (2021); https://doi.org/10.1016/j.surfin.2020.100882
- S.K. Das, S. Ganguli, H. Kabir, J.I. Khandaker and F. Ahmed, Electr. Electron. Mater., 21, 105 (2020); https://doi.org/10.1007/s42341-019-00158-y
- C. Cari, K. Khairuddin, T.Y. Septiawan, P.M. Suciatmoko, D. Kurniawan and A. Supriyanto, AIP Conf. Proc., 2014, 020106 (2018); https://doi.org/10.1063/1.5054510
- A. Omar, M.S. Ali and N. Abd Rahim, Sol. Energy, 207, 1088 (2020); https://doi.org/10.1016/j.solener.2020.07.028
- Masud and H.K. Kim, ACS Omega, 8, 6139 (2023); https://doi.org/10.1021/acsomega.2c06843
- D.A. Chalkias, N.E. Verykokkos, E. Kollia, A. Petala, V. Kostopoulos and G.C. Papanicolaou, Solar Energy, 222, 35 (2021); https://doi.org/10.1016/j.solener.2021.04.051
- F. Kabir, S.N. Sakib and N. Matin, Optik (Stuttg.), 181, 458 (2019); https://doi.org/10.1016/j.ijleo.2018.12.077
- S.N. Kane, S.S. Modak, M. Shah, M. Satalkar, K. Gehlot, N. Ghodke, J.P. Araujo and L.K. Varga, J. Phys. Conf. Ser., 755, 012025 (2016); https://doi.org/10.1088/1742-6596/755/1/012025
References
A. Goetzberger, J. Luther and G. Willeke, Sol. Energy Mater. Sol. Cells, 74, 1 (2002); https://doi.org/10.1016/S0927-0248(02)00042-9
A. Mohammad Bagher, Am. J. Opt. Photonics, 3, 94 (2015); https://doi.org/10.11648/j.ajop.20150305.17
B. Kuswandi, T.S. Jayus, T.S. Larasati, A. Abdullah and L.Y. Heng, Food Anal. Methods, 5, 881 (2012); https://doi.org/10.1007/s12161-011-9326-x
T. Soga, Fundamentals of Solar Cell, In: Nanostructured Materials for Solar Energy Conversion, Elsevier, Chap. 1, pp. 3-43 (2006); https://doi.org/10.1016/B978-044452844-5/50002-0
T. Markvart and L. Castañer, in eds.: S.A. Kalogirou, Principles of Solar Cell Operation, In: McEvoy's Handbook of Photovoltaics, Fundamentals and Applications, Elsevier Ltd., edn. 3, Chap. I-1-A, pp. 3-28 (2018); https://doi.org/10.1016/B978-0-12-809921-6.00001-X
F. Liu, W. Wang, L. Wang and G. Yang, Nanomater. Energy, 2, 3 (2013); https://doi.org/10.1680/nme.12.00024
A. Riverola, A. Vossier and D. Chemisana, Fundamentals of Solar Cells, In: Nanomaterials for Solar Cell Applications, Elsevier Inc., Chap. 1, pp. 3-33 (2019); https://doi.org/10.1016/B978-0-12-813337-8.00001-1
T.D. Raju, V. Murugadoss, K.A. Nirmal, T.D. Dongale, A.V. Kesavan and T.G. Kim, Adv. Powder Mater., 4, 100275 (2025); https://doi.org/10.1016/j.apmate.2025.100275
N. Shah, A.A. Shah, P.K. Leung, S. Khan, K. Sun, X. Zhu and Q. Liao, Processes, 11, 1852 (2023); https://doi.org/10.3390/pr11061852
H.J. Snaith, Adv. Funct. Mater., 20, 13 (2010); https://doi.org/10.1002/adfm.200901476
G. Boschloo, Front Chem., 7, 77 (2019); https://doi.org/10.3389/fchem.2019.00077
S. Dai, J. Weng, Y. Sui, C. Shi, Y. Huang, S. Chen, X. Pan, X. Fang, L. Hu, F. Kong and K. Wang, Sol. Energy Mater. Sol. Cells, 84, 125 (2004); https://doi.org/10.1016/j.solmat.2004.03.002
M.B. Hayat, D. Ali, K.C. Monyake, L. Alagha and N. Ahmed, Int. J. Energy Res., 43, 1049 (2019); https://doi.org/10.1002/er.4252
M.A.M. Al-Alwani, A.B. Mohamad, N.A. Ludin, A.A.H. Kadhum and K. Sopian, Renew. Sustain. Energy Rev., 65, 183 (2016); https://doi.org/10.1016/j.rser.2016.06.045
E.O. Alegbe and T.O. Uthman, Heliyon, 10, e33646 (2024); https://doi.org/10.1016/j.heliyon.2024.e33646
S. Sattar, J. Chem. Educ., 96, 1124 (2019); https://doi.org/10.1021/acs.jchemed.8b00845
D. Jacquemin, E.A. Perpete, I. Ciofini and C. Adamo, Acc. Chem. Res., 42, 326 (2009); https://doi.org/10.1021/ar800163d
R. Lopez-Delgado, M. Tostado-Plascencia, M.E. Álvarez-Ramos and A. Ayón, Microelectron. Eng., 216, 111047 (2019); https://doi.org/10.1016/j.mee.2019.111047
U. Nithiyanantham, A. Ramadoss and S. Kundu, RSC Adv., 4, 35659 (2014); https://doi.org/10.1039/C4RA06226D
M.S. Ahmad, A.K. Pandey and N.A. Rahim, Renew. Sustain. Energy Rev., 77, 89 (2017); https://doi.org/10.1016/j.rser.2017.03.129
A.F. de S. Costa, J.D.P. de Amorim, F.C.G. Almeida, I.D. de Lima, S.C. de Paiva, M.A.V. Rocha, G.M. Vinhas and L.A. Sarubbo, Int. J. Biol. Macromol., 121, 580 (2019); https://doi.org/10.1016/j.ijbiomac.2018.10.066
T. Rajaramanan, F.H. Gourji, Y. Elilan, S. Yohi, M. Senthilnanthanan, P. Ravirajan and D. Velauthapillai, Sci. Rep., 13, 13844 (2023); https://doi.org/10.1038/s41598-023-40437-6
M.R. Aziza, E. Maulana and P. Mudjirahardjo, Indones. J. Electr. Eng. Comput. Sci., 29, 1290 (2023); https://doi.org/10.11591/ijeecs.v29.i3.pp1290-1299
L. Michels, A. Richter, R.K. Chellappan, H.I. Røst, A. Behsen, K.H. Wells, L. Leal, V. Santana, R. Blawid, G.J. da Silva, S.P. Cooil, J.W. Wells and S. Blawid, RSC Adv., 11, 14169 (2021); https://doi.org/10.1039/D0RA08474C
N. Yazie, D. Worku and A. Reda, Mater. Renew. Sustain. Energy, 5, 13 (2016); https://doi.org/10.1007/s40243-016-0077-x
A.O.M. Maka and J.M. Alabid, Clean Energy, 6, 476 (2022); https://doi.org/10.1093/ce/zkac023
L.M. Shaker, A.A. Al-Amiery, M.M. Hanoon, W.K. Al-Azzawi and A.A.H. Kadhum, Sustain. Energy Res., 11, 6 (2024); https://doi.org/10.1186/s40807-024-00100-8
S. Duan, Q. Zhou, A. Li and X.F. Wang, Sol. RRL, 4, 2000162 (2020); https://doi.org/10.1002/solr.202000162
D. Sinha, D. De and A. Ayaz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 193, 467 (2018); https://doi.org/10.1016/j.saa.2017.12.058
Y. Li, W. Zhao, M. Li, G. Chen, X.F. Wang, X. Fu, O. Kitao, H. Tamiaki, K. Sakai, T. Ikeuchi and S.I. Sasaki, Chem. Eur. J., 23, 10886 (2017); https://doi.org/10.1002/chem.201701858
S.K. Ravi, V.S. Udayagiri, L. Suresh, and S.C. Tan, Adv. Funct. Mater., 13, 1705305 (2018); https://doi.org/10.1002/adfm.201705305
C. Medina-Armijo, I. Yousef, A. Berná, A. Puerta, A. Esteve-Núñez, M. Viñas and F.X. Prenafeta-Boldú, Front. Fungal Biol., 5, 13907724 (2024); https://doi.org/10.3389/ffunb.2024.1390724
S.N. Meloan, L.S. Valentine and H. Puchtler, Histochem. Cell Biol., 27, 87 (1971); https://doi.org/10.1007/BF00284950
A. Mbonyiryivuze, Z.Y. Nuru, B. Diop Ngom, B. Mwakikunga, S. Mokhotjwa Dhlamini, E. Park and M. Maaza, Am. J. Nanomater., 3, 22 (2015); https://doi.org/10.12691/ajn-3-1-3
R. Xu, A. Gouda, M.F. Caso, F. Soavi and C. Santato, ACS Omega, 4, 12244 (2019); https://doi.org/10.1021/acsomega.9b01039
M. Séquin-Prey, J. Chem. Educ., 58, 301 (1981); https://doi.org/10.1021/ed058p301
D.Y. Goswami, S. Vijayaraghavan, S. Lu and G. Tamm, Sol. Energy, 76, 33 (2004); https://doi.org/10.1016/S0038-092X(03)00103-8
M.G. Debije and P.P.C. Verbunt, Adv. Energy Mater., 2, 12 (2012); https://doi.org/10.1002/aenm.201100554
A. Lim, P. Ekanayake, L.B.L. Lim and J.M.R.S. Bandara, Spectrochim. Acta A Mol. Biomol. Spectrosc., 167, 26 (2016); https://doi.org/10.1016/j.saa.2016.05.024
R.A.M. Ali and N. Nayan, Int. J. Integr. Eng., 2, 55 (2010).
W.H. Lai, Y.H. Su, L.G. Teoh and M.H. Hon, J. Photochem. Photobiol. Chem., 195, 307 (2008); https://doi.org/10.1016/j.jphotochem.2007.10.018
A. Reda, S. Tadesse and T. Yohannes, J. Photon. Energy, 4, 043091 (2014); https://doi.org/10.1117/1.JPE.4.043091
M. Isah Kimpa, M. Momoh, K. Uthman Isah, H. Nawawi Yahya and M. Muhammed Ndamitso, Mater. Sci. Appl., 3, 281 (2012); https://doi.org/10.4236/msa.2012.35041
D. Tahir, W. Satriani, P.L. Gareso and B. Abdullah, J. Phys. Conf. Ser., 979, 012056 (2018); https://doi.org/10.1088/1742-6596/979/1/012056
K.V. Vinutha, K.B. Naveen Kumar, M.K. Tejas, B.J. Kumar, D.S. Kumar and H.M. Mahesh, Imp. J. Interdiscip. Res., 2, 1011 (2016).
S.A. Taya, H.S. El-Ghamri, T.M. El-Agez and M.S. Abdel-Latif, Br. J. Appl. Sci. Technol., 5, 380 (2015); https://doi.org/10.9734/BJAST/2015/13654
J.M. Cole, G. Pepe, O.K. Al Bahri and C.B. Cooper, Chem. Rev., 119, 7279 (2019); https://doi.org/10.1021/acs.chemrev.8b00632
S. Tadesse, A. Abebe, Y. Chebude, I.V. Garcia and T. Yohannes, J. Photon. Energy, 2, 027001 (2012); https://doi.org/10.1117/1.JPE.2.027001.
A.H. Zyoud, F. Saleh, M.H. Helal, R. Shawahna and H.S. Hilal, J. Nanomater., 2018, 1 (2018); https://doi.org/10.1155/2018/2789616
H. Munawaroh, G. Fadillah, L.N.M.Z. Saputri, Q.A. Hanif, R. Hidayat and S. Wahyuningsih, IOP Conf. Ser. Mater. Sci. Eng. 107, 012061 (2016); https://doi.org/10.1088/1757-899X/107/1/012061
M. Ghosh, P. Chowdhury and A.K. Ray, Catalysts, 10, 917 (2020); https://doi.org/10.3390/catal10080917
A.S. Polo and N.Y. Murakami Iha, Sol. Energy Mater. Sol. Cells, 90, 1936 (2006); https://doi.org/10.1016/j.solmat.2006.02.006
M.R. Nishantha, Y.P.Y.P. Yapa and V.P.S. Perera, Proc. Tech. Sessisions, 28, 54 (2012).
W. Ghann, H. Kang, T. Sheikh, S. Yadav, T. Chavez-Gil, F. Nesbitt and J. Uddin, Sci. Rep., 7, 41470 (2017); https://doi.org/10.1038/srep41470
K. Wattananate, C. Thanachayanont and N. Tonanon, Sol. Energy, 107, 38 (2014); https://doi.org/10.1016/j.solener.2014.05.004
I.C. Maurya, A.K. Neetu, A.K. Gupta, P. Srivastava and L. Bahadur, J. Sol. Energy Eng., 138, 051006 (2016); https://doi.org/10.1115/1.4034028
A. Atli, A. Atilgan, C. Altinkaya, K. Ozel and A. Yildiz, Int. J. Energy Res., 43, 1 (2019); https://doi.org/10.1002/er.4538
M. Hamadanian, J. Safaei-Ghomi, M. Hosseinpour, R. Masoomi and V. Jabbari, Mater. Sci. Semicond. Process., 27, 733 (2014); https://doi.org/10.1016/j.mssp.2014.08.017
P. Chawla, A. Srivastava and M. Tripathi, Environ. Prog. Sustain. Energy, 38, 630 (2019); https://doi.org/10.1002/ep.12965
H.J. Kim, Y.T. Bin, S.N. Karthick, K.V. Hemalatha, C.J. Raj, S. Venkatesan, S. Park and G. Vijayakumar, Int. J. Electrochem. Sci., 8, 6734 (2013); https://doi.org/10.1016/S1452-3981(23)14800-0
W.A. Ayalew and D.W. Ayele, J. Sci. Adv. Mater. Devices, 1, 488 (2016); https://doi.org/10.1016/j.jsamd.2016.10.003
I.C. Maurya, S. Singh, P. Srivastava, B. Maiti and L. Bahadur, Opt. Mater., 90, 273 (2019); https://doi.org/10.1016/j.optmat.2019.02.037
K. Surana, M.G. Idris and B. Bhattacharya, Appl. Nanosci., 10, 3819 (2020); https://doi.org/10.1007/s13204-020-01452-5
S. Madnasri, R.D.A. Wulandari, S. Hadi, I. Yulianti, S.S. Edi and D. Prastiyanto, Mater. Today Proc., 13, 246 (2019); https://doi.org/10.1016/j.matpr.2019.03.222
A. Yuvapragasam, N. Muthukumarasamy, S. Agilan, D. Velauthapillai, T.S. Senthil and S. Sundaram, J. Photochem. Photobiol. B, 148, 223 (2015); https://doi.org/10.1016/j.jphotobiol.2015.04.017
N. Saelim, R. Magaraphan and T. Sreethawong, Ceram. Int., 37, 659 (2011); https://doi.org/10.1016/j.ceramint.2010.09.001
K. Wongcharee, V. Meeyoo and S. Chavadej, Sol. Energy Mater. Sol. Cells, 91, 566 (2007); https://doi.org/10.1016/j.solmat.2006.11.005
K.H. Park, T.Y. Kim, S. Han, H.S. Ko, S.H. Lee, Y.M. Song, J.H. Kim and J.W. Lee, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128, 868 (2014); https://doi.org/10.1016/j.saa.2014.03.016
H. Zhou, L. Wu, Y. Gao and T. Ma, J. Photochem. Photobiol. Chem., 219, 188 (2011); https://doi.org/10.1016/j.jphotochem.2011.02.008
S. Sengupta and F. Würthner, Acc. Chem. Res., 46, 2498 (2013); https://doi.org/10.1021/ar400017u
S.V. Zvezdina, M.B. Berezin and B.D. Berezin, Russ. J. Coord. Chem., 36, 711 (2010); https://doi.org/10.1134/S1070328410090125
X.F. Wang and O. Kitao, Molecules, 17, 4484 (2012); https://doi.org/10.3390/molecules17044484
G. Buscemi, D. Vona, M. Trotta, F. Milano and G.M. Farinola, Adv. Mater. Technol., 7, 2100245 (2022); https://doi.org/10.1002/admt.202100245
W. Sang-aroon, S. Tontapha and V. Amornkitbamrung, in eds.: M. Soroush and K.K.S. Lau, Photovoltaic Performance of Natural Dyes for Dye-Sensitized Solar Cells: A Combined Experimental and Theoretical Study, In: Dye-Sensitized Solar Cells Mathematical Modeling, and Materials Design and Optimization, Academic Press, Chatp. 6, pp. 203-229 (2019).
M.A.M. Al-Alwani, A.B. Mohamad, A.A.H. Kadhum, N.A. Ludin, N.E. Safie, M.Z. Razali, M. Ismail and K. Sopian, Int. J. Electrochem. Sci., 12, 747 (2017); https://doi.org/10.20964/2017.01.56
H. Chang, H.M. Wu, T.L. Chen, K.D. Huang, C.S. Jwo and Y.J. Lo, J. Alloys Compd., 495, 606 (2010); https://doi.org/10.1016/j.jallcom.2009.10.057
N.N.A. Hamid, S. Suhaimi and N.M. Yatim, AIP Conf. Proc., 1972, 030009 (2018); https://doi.org/10.1063/1.5041230
A.K. Rajan and L. Cindrella, Opt. Mater., 88, 39 (2019); https://doi.org/10.1016/j.optmat.2018.11.016
P. Sanjay, K. Deepa, J. Madhavan and S. Senthil, Opt. Mater., 83, 192 (2018); https://doi.org/10.1016/j.optmat.2018.06.011
M.S. Abdel-Latif, M.B. Abuiriban, T.M. El-Agez and S.A. Taya, Int. J. Renew. Energy Res., 5, 294 (2015).
A. Mbonyiryivuze, I. Omollo, B.D. Ngom, B. Mwakikunga, S.M. Dhlamini, E. Park and M. Maaza, Phys. Mater. Chem., 3, 1 (2015); https://doi.org/10.12691/pmc-3-2-2
J.P. Rodríguez and M. Barrientos, J. Nat. Dyes, 45, 124 (2010).
S.N. Yoganarasimhan, Medicinal Plants of India, Bangalore: Tanuja Press, vol. 1 (2002).
J. Camacho and J. Sánchez, Int. J. Nat. Dyes, 35, 48 (2005).
S.H. Aung, Y. Hao, T.Z. Oo and G. Boschloo, J. Photochem. Photobiol. Chem., 325, 1 (2016); https://doi.org/10.1016/j.jphotochem.2016.03.022
M.A. Cousin, S.L. Gordon and K.J. Smillie, Methods Mol. Biol., 1847, 239 (2018); https://doi.org/10.1007/978-1-4939-8719-1_18
P. Trihutomo, S. Soeparman, D. Widhiyanuriyawan and L. Yuliati, Int. J. Photoenergy, 2019, 4384728 (2019); https://doi.org/10.1155/2019/4384728
D. Sinha, D. De and A. Ayaz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 193, 467 (2018); https://doi.org/10.1016/j.saa.2017.12.058
K.E. Jasim, S. Cassidy, F.Z. Henari and A.A. Dakhel, J. Energy Power Eng., 11, 1 (2017); https://doi.org/10.17265/1934-8975/2017.06.006
T.A. Ruhane, M.T. Islam, M.S. Rahaman, M.M.H. Bhuiyan, J.M.M. Islam, T.I. Bhuiyan, K.A. Khan and M.A. Khan, Sustain. Energy Technol. Assess., 20, 72 (2017); https://doi.org/10.1016/j.seta.2017.01.012
M.K. Hossain, M.F. Pervez, M.N.H. Mia, A.A. Mortuza, M.S. Rahaman, M.R. Karim, J.M.M. Islam, F. Ahmed and M.A. Khan, Results Phys., 7, 1516 (2017); https://doi.org/10.1016/j.rinp.2017.04.011
S. Ananth, P. Vivek, T. Arumanayagam and P. Murugakoothan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128, 420 (2014); https://doi.org/10.1016/j.saa.2014.02.169
K. Jasim, Sains Malays., 41, 1011 (2012).
S. Sathyajothi, R. Jayavel and A.C. Dhanemozhi, Mater. Today Proc., 4, 668 (2017); https://doi.org/10.1016/j.matpr.2017.01.071
T.J. Abodunrin, O. Obafemi, A.O. Boyo, T. Adebayo and R. Jimoh, Adv. Mater. Phys. Chem., 5, 205 (2015); https://doi.org/10.4236/ampc.2015.56021
A.S. Najm, N.A. Ludin, M.F. Abdullah, M.A. Almessiere, N.M. Ahmed and M.A.M. Al-Alwani, J. Mater. Sci. Mater. Electron., 31, 3564 (2020); https://doi.org/10.1007/s10854-020-02905-x
Y. Jia, A. Cao, X. Bai, Z. Li, L. Zhang, N. Guo, J. Wei, K. Wang, H. Zhu, D. Wu and P.M. Ajayan, Nano Lett., 11, 1901 (2011); https://doi.org/10.1021/nl2002632
R. Ramamoorthy, N. Radha, G. Maheswari, S. Anandan, S. Manoharan and R. Victor Williams, J. Appl. Electrochem., 46, 929 (2016); https://doi.org/10.1007/s10800-016-0974-9
S.A. De Souza Farias, K.S. Da Costa and J.B.L. Martins, ACS Omega, 6, 8908 (2021); https://doi.org/10.1021/acsomega.0c06156
G. Calogero, J.H. Yum, A. Sinopoli, G. Di Marco, M. Grätzel and M.K. Nazeeruddin, Sol. Energy, 86, 1563 (2012); https://doi.org/10.1016/j.solener.2012.02.018
K.U. Isah, U. Ahmadu, A. Idris, M.I. Kimpa, U.E. Uno, M.M. Ndamitso and N. Alu, Mater. Renew. Sustain. Energy, 4, 5 (2015); https://doi.org/10.1007/s40243-014-0039-0
H.E. Khoo, A. Azlan, S.T. Tang and S.M. Lim, Food Nutr. Res., 61, 1361779 (2017); https://doi.org/10.1080/16546628.2017.1361779
A.R. Obasuyi, D. Glossman-Mitnik and N. Flores-Holguín, J. Comput. Electron., 18, 396 (2019); https://doi.org/10.1007/s10825-019-01331-5
A. Houghton, I. Appelhagen and C. Martin, Plants, 10, 726 (2021); https://doi.org/10.3390/plants10040726
C.R. Welch, Q. Wu and J.E. Simon, Curr. Anal. Chem., 4, 75 (2008); https://doi.org/10.2174/157341108784587795
Y. Yan, Y. Zhang, Y. Zhao, F. Ding, Y. Lei, Y. Wang, J. Zhou and W. Kang, J. Mater. Sci., 60, 4975 (2025); https://doi.org/10.1007/s10853-025-10734-8
Z. Xiao, Ming Li, M. Xu and Z. Lu, J. Phys. Chem. Solids, 59, 911 (1998); https://doi.org/10.1016/S0022-3697(98)00025-0
A. Heidari, R. Teimuri-Mofrad and K.D. Safa, Appl. Organmet. Chem., 37, e7259 (2023); https://doi.org/10.1002/aoc.7259
R. Ramamoorthy, K. Karthika, A.M. Dayana, G. Maheswari, N. Pavithra, V. Eswaramoorthi, S. Anandan and R.V. Williams, J. Mater. Sci.: Mater. Electron., 28, 13678 (2017); https://doi.org/10.1007/s10854-017-7211-0
A.H. Ahliha, F. Nurosyid, A. Supriyanto and T. Kusumaningsih, J. Phys. Conf. Ser., 909, 012013 (2017); https://doi.org/10.1088/1742-6596/909/1/012013
S.C. Ezike, C.N. Hyelnasinyi, M.A. Salawu, J.F. Wansah, A.N. Ossai and N.N. Agu, Surf. Interfaces, 22, 100882 (2021); https://doi.org/10.1016/j.surfin.2020.100882
S.K. Das, S. Ganguli, H. Kabir, J.I. Khandaker and F. Ahmed, Electr. Electron. Mater., 21, 105 (2020); https://doi.org/10.1007/s42341-019-00158-y
C. Cari, K. Khairuddin, T.Y. Septiawan, P.M. Suciatmoko, D. Kurniawan and A. Supriyanto, AIP Conf. Proc., 2014, 020106 (2018); https://doi.org/10.1063/1.5054510
A. Omar, M.S. Ali and N. Abd Rahim, Sol. Energy, 207, 1088 (2020); https://doi.org/10.1016/j.solener.2020.07.028
Masud and H.K. Kim, ACS Omega, 8, 6139 (2023); https://doi.org/10.1021/acsomega.2c06843
D.A. Chalkias, N.E. Verykokkos, E. Kollia, A. Petala, V. Kostopoulos and G.C. Papanicolaou, Solar Energy, 222, 35 (2021); https://doi.org/10.1016/j.solener.2021.04.051
F. Kabir, S.N. Sakib and N. Matin, Optik (Stuttg.), 181, 458 (2019); https://doi.org/10.1016/j.ijleo.2018.12.077
S.N. Kane, S.S. Modak, M. Shah, M. Satalkar, K. Gehlot, N. Ghodke, J.P. Araujo and L.K. Varga, J. Phys. Conf. Ser., 755, 012025 (2016); https://doi.org/10.1088/1742-6596/755/1/012025