Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Liquid Chromatographic Determination of Aromatic Amines in Water Samples after Gold Nanoparticles Coated Membrane Microextraction
Corresponding Author(s) : Chanbasha Basheer
Asian Journal of Chemistry,
Vol. 32 No. 9 (2020): Vol 32 Issue 9, 2020
Abstract
A novel microextraction technique was developed for aromatic amines using gold nanoparticles coated membrane. The preparation of the extraction device involves with the synthesis of gold nanoparticles via the reduction of AuCl3 by hydroxyethyl cellulose followed by coating to the polyethersulfone membrane. The simple extraction procedures involved placing the extraction device in a stirred aqueous sample solution, followed by desorption in an organic solvent using ultrasonication. The extract was analyzed by high performance liquid chromatography. Optimal extraction conditions include 50 min extraction time, 20 min desorption time, 30 mL sample volume, sample pH 10, 5 % NaCl content and 17 mg sorbent mass coupled with 100 μL desorption solvent. The performance of the extraction device in the absence and presence of gold nanoparticles was investigated. Enrichment factors ranged from 148 (for 3-nitroaniline) to 200 (for 3,4-dichloroaniline). The calibration results exhibited good linearity (r2 = 0.9931-0.9988) within the range 0.5-20 μg/L. The limits of detection were 0.3-0.7 μg/L and RSDs (n = 6) 10-19%. Comparison was made with solid-phase extraction. The method was subsequently applied to municipal wastewater samples. The proposed microextraction method offers advantages such as easy operation, high recovery, faster extraction, minimal use of organic solvent and elimination of tedious solvent evaporation and reconstitution steps.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Fishbein, eds.: H. Egan, L. Fishbein, M. Castegnaro, I.K. O’Neill and H. Bartsch, Aromatic Amines of Major Industrial Importance, Use and Occurrence, In: Environmental Carcinogens Selected Methods of Analysis, Some Aromatic Amines and Azo Dyes in the General and Industrial Environment, International Agency for Research on Cancer, Lyon, vol. 4, pp. 51-74 (1981).
- M.N. Sánchez, P.M. Santos, C.P. Sappó, J.L.P. Pavón and B.M. Cordero, Talanta, 119, 375 (2014); https://doi.org/10.1016/j.talanta.2013.11.041
- L. Rubio, S. Sanllorente, L.A. Sarabia and M.C. Ortiz, Chemom. Intell. Lab. Syst., 133, 121 (2014); https://doi.org/10.1016/j.chemolab.2014.01.013
- H. Deng, F. Yang, Z. Li, Z. Bian, Z. Fan, Y. Wang, S. Liu and G. Tang, J. Chromatogr. A, 1507, 37 (2017); https://doi.org/10.1016/j.chroma.2017.05.056
- Z. Bie, W. Lu, Y. Zhu, Y. Chen, H. Ren and L. Ji, J. Chromatogr. A, 1482, 39 (2017); https://doi.org/10.1016/j.chroma.2016.12.060
- R. Canales, M. Guiñez, C. Bazán, M. Reta and S. Cerutti, Talanta, 174, 548 (2017); https://doi.org/10.1016/j.talanta.2017.06.065
- C. Tong, Y. Guo and W. Liu, Chemosphere, 81, 430 (2010); https://doi.org/10.1016/j.chemosphere.2010.06.066
- P. Sutthivaiyakit, S. Achatz, J. Lintelmann, T. Aungpradit, R. Chanwirat, S. Chumanee and A. Kettrup, Anal. Bioanal. Chem., 381, 268 (2005); https://doi.org/10.1007/s00216-004-2852-2
- M. Less, T.C. Schmidt, E. von Löw and G. Stork, J. Chromatogr. A, 810, 173 (1998); https://doi.org/10.1016/s0021-9673(98)00232-5
- M.A. Farajzadeh, N. Nouri and P. Khorram, Trends Analyt. Chem., 55, 14 (2014); https://doi.org/10.1016/j.trac.2013.11.006
- A. Sarafraz-Yazdi and A. Yekkebashi, New J. Chem., 39, 1287 (2015); https://doi.org/10.1039/C4NJ01689K
- A.R. Timerbaev, Chem. Rev., 113, 778 (2013); https://doi.org/10.1021/cr300199v
- J. Saurina and S. Hernandez-Cassou, Anal. Chim. Acta, 396, 151 (1999); https://doi.org/10.1016/S0003-2670(99)00428-6
- Q.Z. Li, M.H. Zhou, Y.F. Liu, C.P. Zhai, J.G. Zheng, Y.Y. Wang, J. Anal. Chem., 41, 2 (2013).
- M. Kaykhaii, G.W. Dicinoski and P.R. Haddad, Anal. Lett., 43, 1546 (2010); https://doi.org/10.1080/00032711003653809
- S. Risticevic, V.H. Niri, D. Vuckovic and J. Pawliszyn, Anal. Bioanal. Chem., 393, 781 (2009); https://doi.org/10.1007/s00216-008-2375-3
- P.S. Randeria, M.R. Jones, K.L. Kohlstedt, R.J. Banga, M. Olvera de la Cruz, G.C. Schatz and C.A. Mirkin, J. Am. Chem. Soc., 137, 3486 (2015); https://doi.org/10.1021/jacs.5b00670
- A.W. Scott, V. Garimella, C.M. Calabrese and C.A. Mirkin, Bioconjug. Chem., 28, 203 (2017); https://doi.org/10.1021/acs.bioconjchem.6b00529
- A. Qin, L.T. Fu, J.K.F. Wong, L.Y. Chau, S.P. Yip and T.M.H. Lee, ACS Appl. Mater. Interfaces, 9, 10472 (2017); https://doi.org/10.1021/acsami.7b00046
- A.E. Prigodich, P.S. Randeria, W.E. Briley, N.J. Kim, W.L. Daniel, D.A. Giljohann and C.A. Mirkin, Anal. Chem., 84, 2062 (2012); https://doi.org/10.1021/ac202648w
- L. Duchesne and D.G. Fernig, Anal. Biochem., 362, 287 (2007); https://doi.org/10.1016/j.ab.2006.12.022
- H. Joshi, P.S. Shirude, V. Bansal, K.N. Ganesh and M. Sastry, J. Phys. Chem. B, 108, 11535 (2004); https://doi.org/10.1021/jp048766z
- C.-H. Teng, K.-C. Ho, Y.-S. Lin and Y.-C. Chen, Anal. Chem., 76, 4337 (2004); https://doi.org/10.1021/ac049963x
- D. Bartczak and A.G. Kanaras, Langmuir, 27, 10119 (2011); https://doi.org/10.1021/la2022177
- T.R. Deepan, S.H. Shah, A.S. Solovyova and J.H. Lakey, ACS Appl. Nanomater., 1, 3590 (2018).
- C. Basheer, A.A. Alnedhary, B.S.M. Rao, S. Valliyaveettil and H.K. Lee, Anal. Chem., 78, 2853 (2006); https://doi.org/10.1021/ac060240i
- D. Mackay, W.Y. Shin, K.-C. Ma and S.C. Lee, (2006). CRC Press, pp 3195-3456.
- J.S. Chiang and S.D. Huang, Talanta, 75, 70 (2008); https://doi.org/10.1016/j.talanta.2007.10.036
- X. Wang, L. Fu, G. Wei, J. Hu, X. Zhao, X. Liu and Y. Li, J. Sep. Sci., 31, 2932 (2008); https://doi.org/10.1002/jssc.200800273
- M. Torbati, A. Mohebbi, M.A. Farajzadeh and M.R. Afshar Mogaddam, Anal. Chim. Acta, 1032, 48 (2018); https://doi.org/10.1016/j.aca.2018.06.025
- A. Jain, K. Reddy-Noone, A.K.K.V. Pillai and K.K. Verma, Anal. Chim. Acta, 801, 48 (2013); https://doi.org/10.1016/j.aca.2013.09.046
- M. Moradi, Y. Yamini, J. Kakehmam, A. Esrali and M. Ghambarian, J. Chromatogr. A, 1218, 3945 (2011); https://doi.org/10.1016/j.chroma.2011.04.060
- A. Young, G. Lai, B. Hung, A. Yuen and Y. He, Chromatographia, 74, 83 (2011); https://doi.org/10.1007/s10337-011-2022-6
- M.R. Hadjmohammadi, S. Ebrahimi, S. Saman and S.J. Nazari, Int. J. Environ. Anal. Chem., 96, 445 (2016); https://doi.org/10.1080/03067319.2016.1150466
- M. Aznar, E. Canellas and C. Nerín, J. Chromatogr. A, 1216, 5176 (2009); https://doi.org/10.1016/j.chroma.2009.04.096
- A.S. Yazdi, F. Mofazzeli and Z. Es’haghi, J. Chromatogr. A, 1216, 5086 (2009); https://doi.org/10.1016/j.chroma.2009.04.090
- B. Jurado-Sánchez, E. Ballesteros and M. Gallego, Sci. Total Environ., 463–464, 293 (2013); https://doi.org/10.1016/j.scitotenv.2013.06.002
- N. Jalilian, H. Ebrahimzadeh and A.A. Asgharinezhad, J. Chromatogr. A, 1499, 38 (2017); https://doi.org/10.1016/j.chroma.2017.03.087
References
L. Fishbein, eds.: H. Egan, L. Fishbein, M. Castegnaro, I.K. O’Neill and H. Bartsch, Aromatic Amines of Major Industrial Importance, Use and Occurrence, In: Environmental Carcinogens Selected Methods of Analysis, Some Aromatic Amines and Azo Dyes in the General and Industrial Environment, International Agency for Research on Cancer, Lyon, vol. 4, pp. 51-74 (1981).
M.N. Sánchez, P.M. Santos, C.P. Sappó, J.L.P. Pavón and B.M. Cordero, Talanta, 119, 375 (2014); https://doi.org/10.1016/j.talanta.2013.11.041
L. Rubio, S. Sanllorente, L.A. Sarabia and M.C. Ortiz, Chemom. Intell. Lab. Syst., 133, 121 (2014); https://doi.org/10.1016/j.chemolab.2014.01.013
H. Deng, F. Yang, Z. Li, Z. Bian, Z. Fan, Y. Wang, S. Liu and G. Tang, J. Chromatogr. A, 1507, 37 (2017); https://doi.org/10.1016/j.chroma.2017.05.056
Z. Bie, W. Lu, Y. Zhu, Y. Chen, H. Ren and L. Ji, J. Chromatogr. A, 1482, 39 (2017); https://doi.org/10.1016/j.chroma.2016.12.060
R. Canales, M. Guiñez, C. Bazán, M. Reta and S. Cerutti, Talanta, 174, 548 (2017); https://doi.org/10.1016/j.talanta.2017.06.065
C. Tong, Y. Guo and W. Liu, Chemosphere, 81, 430 (2010); https://doi.org/10.1016/j.chemosphere.2010.06.066
P. Sutthivaiyakit, S. Achatz, J. Lintelmann, T. Aungpradit, R. Chanwirat, S. Chumanee and A. Kettrup, Anal. Bioanal. Chem., 381, 268 (2005); https://doi.org/10.1007/s00216-004-2852-2
M. Less, T.C. Schmidt, E. von Löw and G. Stork, J. Chromatogr. A, 810, 173 (1998); https://doi.org/10.1016/s0021-9673(98)00232-5
M.A. Farajzadeh, N. Nouri and P. Khorram, Trends Analyt. Chem., 55, 14 (2014); https://doi.org/10.1016/j.trac.2013.11.006
A. Sarafraz-Yazdi and A. Yekkebashi, New J. Chem., 39, 1287 (2015); https://doi.org/10.1039/C4NJ01689K
A.R. Timerbaev, Chem. Rev., 113, 778 (2013); https://doi.org/10.1021/cr300199v
J. Saurina and S. Hernandez-Cassou, Anal. Chim. Acta, 396, 151 (1999); https://doi.org/10.1016/S0003-2670(99)00428-6
Q.Z. Li, M.H. Zhou, Y.F. Liu, C.P. Zhai, J.G. Zheng, Y.Y. Wang, J. Anal. Chem., 41, 2 (2013).
M. Kaykhaii, G.W. Dicinoski and P.R. Haddad, Anal. Lett., 43, 1546 (2010); https://doi.org/10.1080/00032711003653809
S. Risticevic, V.H. Niri, D. Vuckovic and J. Pawliszyn, Anal. Bioanal. Chem., 393, 781 (2009); https://doi.org/10.1007/s00216-008-2375-3
P.S. Randeria, M.R. Jones, K.L. Kohlstedt, R.J. Banga, M. Olvera de la Cruz, G.C. Schatz and C.A. Mirkin, J. Am. Chem. Soc., 137, 3486 (2015); https://doi.org/10.1021/jacs.5b00670
A.W. Scott, V. Garimella, C.M. Calabrese and C.A. Mirkin, Bioconjug. Chem., 28, 203 (2017); https://doi.org/10.1021/acs.bioconjchem.6b00529
A. Qin, L.T. Fu, J.K.F. Wong, L.Y. Chau, S.P. Yip and T.M.H. Lee, ACS Appl. Mater. Interfaces, 9, 10472 (2017); https://doi.org/10.1021/acsami.7b00046
A.E. Prigodich, P.S. Randeria, W.E. Briley, N.J. Kim, W.L. Daniel, D.A. Giljohann and C.A. Mirkin, Anal. Chem., 84, 2062 (2012); https://doi.org/10.1021/ac202648w
L. Duchesne and D.G. Fernig, Anal. Biochem., 362, 287 (2007); https://doi.org/10.1016/j.ab.2006.12.022
H. Joshi, P.S. Shirude, V. Bansal, K.N. Ganesh and M. Sastry, J. Phys. Chem. B, 108, 11535 (2004); https://doi.org/10.1021/jp048766z
C.-H. Teng, K.-C. Ho, Y.-S. Lin and Y.-C. Chen, Anal. Chem., 76, 4337 (2004); https://doi.org/10.1021/ac049963x
D. Bartczak and A.G. Kanaras, Langmuir, 27, 10119 (2011); https://doi.org/10.1021/la2022177
T.R. Deepan, S.H. Shah, A.S. Solovyova and J.H. Lakey, ACS Appl. Nanomater., 1, 3590 (2018).
C. Basheer, A.A. Alnedhary, B.S.M. Rao, S. Valliyaveettil and H.K. Lee, Anal. Chem., 78, 2853 (2006); https://doi.org/10.1021/ac060240i
D. Mackay, W.Y. Shin, K.-C. Ma and S.C. Lee, (2006). CRC Press, pp 3195-3456.
J.S. Chiang and S.D. Huang, Talanta, 75, 70 (2008); https://doi.org/10.1016/j.talanta.2007.10.036
X. Wang, L. Fu, G. Wei, J. Hu, X. Zhao, X. Liu and Y. Li, J. Sep. Sci., 31, 2932 (2008); https://doi.org/10.1002/jssc.200800273
M. Torbati, A. Mohebbi, M.A. Farajzadeh and M.R. Afshar Mogaddam, Anal. Chim. Acta, 1032, 48 (2018); https://doi.org/10.1016/j.aca.2018.06.025
A. Jain, K. Reddy-Noone, A.K.K.V. Pillai and K.K. Verma, Anal. Chim. Acta, 801, 48 (2013); https://doi.org/10.1016/j.aca.2013.09.046
M. Moradi, Y. Yamini, J. Kakehmam, A. Esrali and M. Ghambarian, J. Chromatogr. A, 1218, 3945 (2011); https://doi.org/10.1016/j.chroma.2011.04.060
A. Young, G. Lai, B. Hung, A. Yuen and Y. He, Chromatographia, 74, 83 (2011); https://doi.org/10.1007/s10337-011-2022-6
M.R. Hadjmohammadi, S. Ebrahimi, S. Saman and S.J. Nazari, Int. J. Environ. Anal. Chem., 96, 445 (2016); https://doi.org/10.1080/03067319.2016.1150466
M. Aznar, E. Canellas and C. Nerín, J. Chromatogr. A, 1216, 5176 (2009); https://doi.org/10.1016/j.chroma.2009.04.096
A.S. Yazdi, F. Mofazzeli and Z. Es’haghi, J. Chromatogr. A, 1216, 5086 (2009); https://doi.org/10.1016/j.chroma.2009.04.090
B. Jurado-Sánchez, E. Ballesteros and M. Gallego, Sci. Total Environ., 463–464, 293 (2013); https://doi.org/10.1016/j.scitotenv.2013.06.002
N. Jalilian, H. Ebrahimzadeh and A.A. Asgharinezhad, J. Chromatogr. A, 1499, 38 (2017); https://doi.org/10.1016/j.chroma.2017.03.087