Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Spectral Characterization, Thermal and Antimicrobial Studies of Some Divalent Metal Chelates of 7-((3-Phenyl-4,5-dihydroisoxazol-5-yl)methyl)quinolin-8-ol
Corresponding Author(s) : Asma A. Alothman
Asian Journal of Chemistry,
Vol. 32 No. 9 (2020): Vol 32 Issue 9, 2020
Abstract
A series of Cu(II), Ni(II) and Co(II) azo chelates (AZC1-AZC3) of 7-((3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)quinolin-8-ol have been designed and obtained. Thermal measurements, molar conductance, magnetic moment, elemental analyses, spectral (IR, UV-Vis, 1H and 13C NMR, ESR, mass) were used to characterize insulated solid complexes. The metal complexes were assumed to be non-electrolytic by molar conductance values. Thermal properties and decomposition kinetics of the metal chelates are investigated using Coats-Redfern method. The kinetic parameters like activation energy (E*), pre-exponential factor (A) and entropy of activation (ΔS*) were quantified. Results of spectral studies of mass and TGA data confirmed the octahedral geometry for all chelates. Finally, the synthesized metal-complexes were tested for their in vitro antimicrobial efficacy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Yildiz, M. Keles, A. Kaya and S. Dincer, Chem. Sci. Trans., 2, 547 (2013); https://doi.org/10.7598/cst2013.353
- S.J. Naik and U.P. Halkar, ARKIVOC, 141 (2005); https://doi.org/10.3998/ark.5550190.0006.d12
- H.R. Maradiya and V.S. Patel, J. Braz. Chem. Soc., 12, 710 (2001); https://doi.org/10.1590/S0103-50532001000600004
- S.B. Savvin, V.P. Dedkova and O.P. Shvoeva, Russ. Chem. Rev., 69, 187 (2000); https://doi.org/10.1070/RC2000v069n03ABEH000538
- J. Athira, Y. Sindhu, S. Sujamol and K. Mohanan, J. Serb. Chem. Soc., 76, 249 (2011); https://doi.org/10.2298/JSC100414025A
- G.G. Mohamed, E.M. Zayed and A.M.M. Hindy, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 145, 76 (2015); https://doi.org/10.1016/j.saa.2015.01.129
- B. Padmashali, V.P. Vaidya, K.M. Mahadevan and K.P. Latha, Indian J. Chem., 44B, 1446 (2005).
- P.K. Sharma, R.N. Khanna, B.K. Rohatgi and R.H. Thomson, Phytochemistry, 27, 632 (1988); https://doi.org/10.1016/0031-9422(88)83161-3
- G.K. Nagaraja, G.K. Prakash, M.N. Kumaraswamy, V.P. Vaidya and K.M. Mahadevan, ARKIVOC, 160 (2006); https://doi.org/10.3998/ark.5550190.0007.f19
- M.N. Kumaraswamy and V.P. Vaidya, Indian J. Heterocycl. Chem., 14, 193 (2005).
- Z.H. Chohan and C.T. Supuran, J. Enzyme Inhib. Med. Chem., 23, 240 (2008); https://doi.org/10.1080/14756360701474913
- R. Ramesh and M. Sivagamasundari, Synth. React. Inorg. Met.-Org. Chem., 33, 899 (2003); https://doi.org/10.1081/SIM-120021656
- H.A. Flaschka, EDTA Titration, Pergamon Press, edn 2 (1964).
- A.I. Vogel, Textbook of Quantitative Inorganic Analysis, Longman: London, edn 4 (1978).
- A. Vogel, Textbook of Practical Organic Chemistry, Longman Group: London, edn 5 (1989).
- A.W. Bauer, W.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45(4_ts), 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493
- W. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
- P. Tyagi, S. Chandra, B.S. Saraswat and D. Sharma, Spectrochim. Acta A, 143, 1 (2015); https://doi.org/10.1016/j.saa.2015.02.027
- P. Tyagi, S. Chandra and B.S. Saraswat, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 134, 200 (2015); https://doi.org/10.1016/j.saa.2014.06.112
- H.A. Bayoumi, A.M.A. Alaghaz and M.S. Aljahdali, Int. J. Electrochem. Sci., 8, 9399 (2013).
- M. Tyagi, S. Chandra and P. Tyagi, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 117, 1 (2014); https://doi.org/10.1016/j.saa.2013.07.074
- J.C. Bailar, H.J. Emeleus, R. Nyholm and A.F. Trotman-Dickenson, Comprehensive Inorganic Chemistry, Pergamon Press, vol. 3 (1975).
- F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, John Wiley & Sons: New York, edn 4 (1986).
- N. Kavitha and P.V.A. Lakshmi, J. Mol. Struct., 1176, 798 (2019); https://doi.org/10.1016/j.molstruc.2018.09.042
- B.J. Hathaway and A.A.G. Tomlinson, Coord. Chem. Rev., 5, 1 (1970); https://doi.org/10.1016/S0010-8545(00)80073-9
- K.W.H. Stevens and and M.H.L. Pryce, Proc. Roy. Soc. (London), A219, 542 (1953); https://doi.org/10.1098/rspa.1953.0166
- A.W. Coats and J.P. Redfern, Nature, 201, 68 (1964); https://doi.org/10.1038/201068a0
- W. Wendland, Thermal Methods of Analysis, Interscience: New York, vol. XIX, pp. 424 (1964).
- J.K. Basu, M. Shannigrahi, N. Ray and S. Bagchi, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 61, 2539 (2005); https://doi.org/10.1016/j.saa.2004.09.017
- P. Scherrer, Göttinger Nachrichten Gesell., 2, 98 (1918).
- F. Yakuphanoglu, I. Erol, Y. Aydogdu and M. Ahmedzade, Mater. Lett., 57, 229 (2002); https://doi.org/10.1016/S0167-577X(02)00771-1
- V.A. Kawade, A.A. Kumbhar, A.S. Kumbhar, C. Näther, A. Erxleben, U.B. Sonawane and R.R. Joshi, Dalton Trans., 40, 639 (2011); https://doi.org/10.1039/C0DT01078B
References
E. Yildiz, M. Keles, A. Kaya and S. Dincer, Chem. Sci. Trans., 2, 547 (2013); https://doi.org/10.7598/cst2013.353
S.J. Naik and U.P. Halkar, ARKIVOC, 141 (2005); https://doi.org/10.3998/ark.5550190.0006.d12
H.R. Maradiya and V.S. Patel, J. Braz. Chem. Soc., 12, 710 (2001); https://doi.org/10.1590/S0103-50532001000600004
S.B. Savvin, V.P. Dedkova and O.P. Shvoeva, Russ. Chem. Rev., 69, 187 (2000); https://doi.org/10.1070/RC2000v069n03ABEH000538
J. Athira, Y. Sindhu, S. Sujamol and K. Mohanan, J. Serb. Chem. Soc., 76, 249 (2011); https://doi.org/10.2298/JSC100414025A
G.G. Mohamed, E.M. Zayed and A.M.M. Hindy, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 145, 76 (2015); https://doi.org/10.1016/j.saa.2015.01.129
B. Padmashali, V.P. Vaidya, K.M. Mahadevan and K.P. Latha, Indian J. Chem., 44B, 1446 (2005).
P.K. Sharma, R.N. Khanna, B.K. Rohatgi and R.H. Thomson, Phytochemistry, 27, 632 (1988); https://doi.org/10.1016/0031-9422(88)83161-3
G.K. Nagaraja, G.K. Prakash, M.N. Kumaraswamy, V.P. Vaidya and K.M. Mahadevan, ARKIVOC, 160 (2006); https://doi.org/10.3998/ark.5550190.0007.f19
M.N. Kumaraswamy and V.P. Vaidya, Indian J. Heterocycl. Chem., 14, 193 (2005).
Z.H. Chohan and C.T. Supuran, J. Enzyme Inhib. Med. Chem., 23, 240 (2008); https://doi.org/10.1080/14756360701474913
R. Ramesh and M. Sivagamasundari, Synth. React. Inorg. Met.-Org. Chem., 33, 899 (2003); https://doi.org/10.1081/SIM-120021656
H.A. Flaschka, EDTA Titration, Pergamon Press, edn 2 (1964).
A.I. Vogel, Textbook of Quantitative Inorganic Analysis, Longman: London, edn 4 (1978).
A. Vogel, Textbook of Practical Organic Chemistry, Longman Group: London, edn 5 (1989).
A.W. Bauer, W.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45(4_ts), 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493
W. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
P. Tyagi, S. Chandra, B.S. Saraswat and D. Sharma, Spectrochim. Acta A, 143, 1 (2015); https://doi.org/10.1016/j.saa.2015.02.027
P. Tyagi, S. Chandra and B.S. Saraswat, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 134, 200 (2015); https://doi.org/10.1016/j.saa.2014.06.112
H.A. Bayoumi, A.M.A. Alaghaz and M.S. Aljahdali, Int. J. Electrochem. Sci., 8, 9399 (2013).
M. Tyagi, S. Chandra and P. Tyagi, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 117, 1 (2014); https://doi.org/10.1016/j.saa.2013.07.074
J.C. Bailar, H.J. Emeleus, R. Nyholm and A.F. Trotman-Dickenson, Comprehensive Inorganic Chemistry, Pergamon Press, vol. 3 (1975).
F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, John Wiley & Sons: New York, edn 4 (1986).
N. Kavitha and P.V.A. Lakshmi, J. Mol. Struct., 1176, 798 (2019); https://doi.org/10.1016/j.molstruc.2018.09.042
B.J. Hathaway and A.A.G. Tomlinson, Coord. Chem. Rev., 5, 1 (1970); https://doi.org/10.1016/S0010-8545(00)80073-9
K.W.H. Stevens and and M.H.L. Pryce, Proc. Roy. Soc. (London), A219, 542 (1953); https://doi.org/10.1098/rspa.1953.0166
A.W. Coats and J.P. Redfern, Nature, 201, 68 (1964); https://doi.org/10.1038/201068a0
W. Wendland, Thermal Methods of Analysis, Interscience: New York, vol. XIX, pp. 424 (1964).
J.K. Basu, M. Shannigrahi, N. Ray and S. Bagchi, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 61, 2539 (2005); https://doi.org/10.1016/j.saa.2004.09.017
P. Scherrer, Göttinger Nachrichten Gesell., 2, 98 (1918).
F. Yakuphanoglu, I. Erol, Y. Aydogdu and M. Ahmedzade, Mater. Lett., 57, 229 (2002); https://doi.org/10.1016/S0167-577X(02)00771-1
V.A. Kawade, A.A. Kumbhar, A.S. Kumbhar, C. Näther, A. Erxleben, U.B. Sonawane and R.R. Joshi, Dalton Trans., 40, 639 (2011); https://doi.org/10.1039/C0DT01078B