Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
1D MoO3 Nanorods Decorated by Palladium Nanoparticles: Surface Plasmon Resonance Promoted Photodegradation of Congo Red Dye
Corresponding Author(s) : S. Karuthapandian
Asian Journal of Chemistry,
Vol. 32 No. 9 (2020): Vol 32 Issue 9, 2020
Abstract
In this work, 1D, MoO3 palm leaf shaped nanorods decorated by palladium nanoparticle for the photodegradation of organic pollutant. The Pd loaded MoO3 ratio were optimized and 2% Pd loaded MoO3 shows excellent photodegradation towards the organic pollutants. The synthesized Pd decorated MoO3 nanorods were characterized by various analytical tools such as TEM, SEM, BET, EDX, XRD, UV-DRS etc., The TEM and SEM results revealed that the palm leaf shaped MoO3 nanorods was well decorated by Pd metals. The crystallite size of MoO3 was decreased when increases the palladium loading percentage. The surface area of MoO3 lowered when palladium loaded. The prepared nanocomposites were in high purity confirmed by EDX analysis. The energy gap tailored into visible region by loaded palladium. The catalytic efficiency of the prepared nanocomposites were tested against the photo degradation of organic pollutant within 60 min and rate constant also calculated. The catalyst was not much lower their activity even five reusability. The OH− and h+ (holes) were the active species involved in the photodegradation mechanism.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Kusic, N. Koprivanac and A.L. Bozic, J. Photochem. Photobiol. Chem., 252, 131 (2013); https://doi.org/10.1016/j.jphotochem.2012.11.018
- L. Pereira and M. Alves, eds.: A. Malik and E. Grohmann, Environmental Protection Strategies for Sustainable Development, Springer: New York, vol. 14, pp. 111-162 (2012).
- S.S. Boxi and S. Paria, RSC Adv., 5, 37657 (2015); https://doi.org/10.1039/C5RA03421C
- S.K. Kansal, S. Sood, A. Umar and S.K. Mehta, J. Alloys Compd., 581, 392 (2013); https://doi.org/10.1016/j.jallcom.2013.07.069
- M.M. Kumari and D. Philip, Spectrochim. Acta A Mol. Biomol. Spectrosc., 135, 632 (2015); https://doi.org/10.1016/j.saa.2014.07.037
- K. Saravanakumar and V. Muthuraj, Optik, 131, 754 (2017); https://doi.org/10.1016/j.ijleo.2016.11.127
- S.W. Won, S.B. Choi, B.W. Chung, D. Park, J.M. Park and Y.S. Yun, Ind. Eng. Chem. Res., 43, 7865 (2004); https://doi.org/10.1021/ie049559o
- S. Chatterjee, S. Chatterjee, B.P. Chatterjee, A.R. Das and A.K. Guha, J. Colloid Interface Sci., 288, 30 (2005); https://doi.org/10.1016/j.jcis.2005.02.055
- K. Saravanakumar, P.S. Kumar, J.V. Kumar, S. Karuthapandian, R. Philip and V. Muthuraj, Energy Environ. Focus, 5, 50 (2016); https://doi.org/10.1166/eef.2016.1192
- Y. Ma, Y. Jia, Z. Jiao, L. Wang, M. Yang, Y. Bi and Y. Qi, Mater. Lett., 157, 53 (2015); https://doi.org/10.1016/j.matlet.2015.05.095
- L. Huang, H. Xu, R. Zhang, X. Cheng, J. Xia, Y. Xu and H. Li, Appl. Surf. Sci., 283, 25 (2013); https://doi.org/10.1016/j.apsusc.2013.05.106
- B. Kannan, R. Pandeeswari and B.G. Jeyaprakash, Ceram. Int., 40, 5817 (2014); https://doi.org/10.1016/j.ceramint.2013.11.022
- Z. Wang, S. Madhavi and X.W. Lou, J. Phys. Chem. C, 116, 12508 (2012); https://doi.org/10.1021/jp304216z
- L. Mai, B. Hu, W. Chen, Y. Qi, C. Lao, R. Yang, Y. Dai and Z.L. Wang, Adv. Mater., 19, 3712 (2007); https://doi.org/10.1002/adma.200700883
- T. Liu, B. Li, Y. Hao and Z. Yao, Chem. Eng. J., 244, 382 (2014); https://doi.org/10.1016/j.cej.2014.01.070
- S.L. Prabavathi, P.S. Kumar, K. Saravanakumar, V. Muthuraj and S. Karuthapandian, J. Photochem. Photobiol. Chem., 356, 642 (2018); https://doi.org/10.1016/j.jphotochem.2018.02.007
- X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan, Z. Luo, X. Rui, B. Chen, Q. Yan and H. Zhang, Adv. Mater., 27, 4695 (2015); https://doi.org/10.1002/adma.201501310
- W. Hou and S.B. Cronin, Adv. Funct. Mater., 23, 1612 (2013); https://doi.org/10.1002/adfm.201202148
- Y.F. Zhang and S.J. Park, J. Catal., 355, 1 (2017); https://doi.org/10.1016/j.jcat.2017.08.007
- Y. Zhang, M. Park, H. Kim, B. Ding and S.J. Park, Appl. Surf. Sci., 384, 192 (2016); https://doi.org/10.1016/j.apsusc.2016.05.039
- H. Pang, Y. Wu, X. Wang, B. Hu and X. Wang, Chem. Asian J., 14, 2542 (2019); https://doi.org/10.1002/asia.201900493
- K. Saravanakumar, S. Muthupoongodi and V. Muthuraj, J. Rare Earths, 37, 853 (2019); https://doi.org/10.1016/j.jre.2018.12.009
- S. Saravanamoorthy, A.C. Bose and S. Velmathi, RSC Adv., 5, 99074 (2015); https://doi.org/10.1039/C5RA17733B
- A. Chithambararaj, N.S. Sanjini, A.C. Bose and S. Velmathi, Catal. Sci. Technol., 3, 1405 (2013); https://doi.org/10.1039/c3cy20764a
- P. Zhang, T. Song, T. Wang and H. Zeng, J. Mater. Chem. A Mater. Energy Sustain., 5, 22772 (2017); https://doi.org/10.1039/C7TA06625B
- Y.F. Zhang and S.J. Park, J. Catal., 361, 238 (2018); https://doi.org/10.1016/j.jcat.2018.03.010
- K. Saravanakumar, R. Karthik, S.-M. Chen, J. Vinoth Kumar, K. Prakash and V. Muthuraj, J. Colloid Interface Sci., 504, 514 (2017); https://doi.org/10.1016/j.jcis.2017.06.003
- N. Illyaskutty, S. Sreedhar, G. Sanal Kumar, H. Kohler, M. Schwotzer, C. Natzeck and V.P.M. Pillai, Nanoscale, 6, 13882 (2014); https://doi.org/10.1039/C4NR04529G
- K. Saravanakumar, V. Muthuraj and S. Vadivel, RSC Adv., 6, 61357 (2016); https://doi.org/10.1039/C6RA10444D
- S. Lakshmi Prabavathi and K. Saravanakumar, Colloids Surf. A Physicochem. Eng. Asp., 581, 123845 (2019); https://doi.org/10.1016/j.colsurfa.2019.123845
- K. Saravanakumar, M.M. Ramjan, P. Suresh and V. Muthuraj, J. Alloys Compd., 664, 149 (2016); https://doi.org/10.1016/j.jallcom.2015.12.245
- M. Dhanalakshmi, K. Saravanakumar, S. Lakshmi Prabavathi, M. Abinaya and V. Muthuraj, J. Alloys Compd., 763, 512 (2018); https://doi.org/10.1016/j.jallcom.2018.05.340
- M. Mousavi, A. Habibi-Yangjeh and M. Abitorabi, J. Colloid Interface Sci., 480, 218 (2016); https://doi.org/10.1016/j.jcis.2016.07.021
- H. Salari, J. Photochem. Photobiol. Chem., 385, 112069 (2019); https://doi.org/10.1016/j.jphotochem.2019.112069
- T. Tapalad, A. Neramittagapong, S. Neramittagapong and M. Boonmee, Chiang Mai J. Sci., 35, 63 (2008).
- S. Dafare, P.S. Deshpande and R.S. Bhavsar, Indian J. Chem. Technol., 20, 406 (2013).
- J. Fowsiya, G. Madhumitha, N.A. Al-Dhabi and M.V. Arasu, J. Photochem. Photobiol. B, 162, 395 (2016); https://doi.org/10.1016/j.jphotobiol.2016.07.011
- P. Latha, R. Dhanabackialakshmi, P.S. Kumar and S. Karuthapandian, Sep. Purif. Technol., 168, 124 (2016); https://doi.org/10.1016/j.seppur.2016.05.038
- M. Thomas, G.A. Naikoo, M.U.D. Sheikh, M. Bano and F. Khan, J. Photochem. Photobiol. Chem., 327, 33 (2016); https://doi.org/10.1016/j.jphotochem.2016.05.005
- P.S. Kumar, M. Selvakumar, S.G. Babu, S.K. Jaganathan, S. Karuthapandian and S. Chattopadhyay, RSC Adv., 5, 57493 (2015); https://doi.org/10.1039/C5RA08783J
References
H. Kusic, N. Koprivanac and A.L. Bozic, J. Photochem. Photobiol. Chem., 252, 131 (2013); https://doi.org/10.1016/j.jphotochem.2012.11.018
L. Pereira and M. Alves, eds.: A. Malik and E. Grohmann, Environmental Protection Strategies for Sustainable Development, Springer: New York, vol. 14, pp. 111-162 (2012).
S.S. Boxi and S. Paria, RSC Adv., 5, 37657 (2015); https://doi.org/10.1039/C5RA03421C
S.K. Kansal, S. Sood, A. Umar and S.K. Mehta, J. Alloys Compd., 581, 392 (2013); https://doi.org/10.1016/j.jallcom.2013.07.069
M.M. Kumari and D. Philip, Spectrochim. Acta A Mol. Biomol. Spectrosc., 135, 632 (2015); https://doi.org/10.1016/j.saa.2014.07.037
K. Saravanakumar and V. Muthuraj, Optik, 131, 754 (2017); https://doi.org/10.1016/j.ijleo.2016.11.127
S.W. Won, S.B. Choi, B.W. Chung, D. Park, J.M. Park and Y.S. Yun, Ind. Eng. Chem. Res., 43, 7865 (2004); https://doi.org/10.1021/ie049559o
S. Chatterjee, S. Chatterjee, B.P. Chatterjee, A.R. Das and A.K. Guha, J. Colloid Interface Sci., 288, 30 (2005); https://doi.org/10.1016/j.jcis.2005.02.055
K. Saravanakumar, P.S. Kumar, J.V. Kumar, S. Karuthapandian, R. Philip and V. Muthuraj, Energy Environ. Focus, 5, 50 (2016); https://doi.org/10.1166/eef.2016.1192
Y. Ma, Y. Jia, Z. Jiao, L. Wang, M. Yang, Y. Bi and Y. Qi, Mater. Lett., 157, 53 (2015); https://doi.org/10.1016/j.matlet.2015.05.095
L. Huang, H. Xu, R. Zhang, X. Cheng, J. Xia, Y. Xu and H. Li, Appl. Surf. Sci., 283, 25 (2013); https://doi.org/10.1016/j.apsusc.2013.05.106
B. Kannan, R. Pandeeswari and B.G. Jeyaprakash, Ceram. Int., 40, 5817 (2014); https://doi.org/10.1016/j.ceramint.2013.11.022
Z. Wang, S. Madhavi and X.W. Lou, J. Phys. Chem. C, 116, 12508 (2012); https://doi.org/10.1021/jp304216z
L. Mai, B. Hu, W. Chen, Y. Qi, C. Lao, R. Yang, Y. Dai and Z.L. Wang, Adv. Mater., 19, 3712 (2007); https://doi.org/10.1002/adma.200700883
T. Liu, B. Li, Y. Hao and Z. Yao, Chem. Eng. J., 244, 382 (2014); https://doi.org/10.1016/j.cej.2014.01.070
S.L. Prabavathi, P.S. Kumar, K. Saravanakumar, V. Muthuraj and S. Karuthapandian, J. Photochem. Photobiol. Chem., 356, 642 (2018); https://doi.org/10.1016/j.jphotochem.2018.02.007
X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan, Z. Luo, X. Rui, B. Chen, Q. Yan and H. Zhang, Adv. Mater., 27, 4695 (2015); https://doi.org/10.1002/adma.201501310
W. Hou and S.B. Cronin, Adv. Funct. Mater., 23, 1612 (2013); https://doi.org/10.1002/adfm.201202148
Y.F. Zhang and S.J. Park, J. Catal., 355, 1 (2017); https://doi.org/10.1016/j.jcat.2017.08.007
Y. Zhang, M. Park, H. Kim, B. Ding and S.J. Park, Appl. Surf. Sci., 384, 192 (2016); https://doi.org/10.1016/j.apsusc.2016.05.039
H. Pang, Y. Wu, X. Wang, B. Hu and X. Wang, Chem. Asian J., 14, 2542 (2019); https://doi.org/10.1002/asia.201900493
K. Saravanakumar, S. Muthupoongodi and V. Muthuraj, J. Rare Earths, 37, 853 (2019); https://doi.org/10.1016/j.jre.2018.12.009
S. Saravanamoorthy, A.C. Bose and S. Velmathi, RSC Adv., 5, 99074 (2015); https://doi.org/10.1039/C5RA17733B
A. Chithambararaj, N.S. Sanjini, A.C. Bose and S. Velmathi, Catal. Sci. Technol., 3, 1405 (2013); https://doi.org/10.1039/c3cy20764a
P. Zhang, T. Song, T. Wang and H. Zeng, J. Mater. Chem. A Mater. Energy Sustain., 5, 22772 (2017); https://doi.org/10.1039/C7TA06625B
Y.F. Zhang and S.J. Park, J. Catal., 361, 238 (2018); https://doi.org/10.1016/j.jcat.2018.03.010
K. Saravanakumar, R. Karthik, S.-M. Chen, J. Vinoth Kumar, K. Prakash and V. Muthuraj, J. Colloid Interface Sci., 504, 514 (2017); https://doi.org/10.1016/j.jcis.2017.06.003
N. Illyaskutty, S. Sreedhar, G. Sanal Kumar, H. Kohler, M. Schwotzer, C. Natzeck and V.P.M. Pillai, Nanoscale, 6, 13882 (2014); https://doi.org/10.1039/C4NR04529G
K. Saravanakumar, V. Muthuraj and S. Vadivel, RSC Adv., 6, 61357 (2016); https://doi.org/10.1039/C6RA10444D
S. Lakshmi Prabavathi and K. Saravanakumar, Colloids Surf. A Physicochem. Eng. Asp., 581, 123845 (2019); https://doi.org/10.1016/j.colsurfa.2019.123845
K. Saravanakumar, M.M. Ramjan, P. Suresh and V. Muthuraj, J. Alloys Compd., 664, 149 (2016); https://doi.org/10.1016/j.jallcom.2015.12.245
M. Dhanalakshmi, K. Saravanakumar, S. Lakshmi Prabavathi, M. Abinaya and V. Muthuraj, J. Alloys Compd., 763, 512 (2018); https://doi.org/10.1016/j.jallcom.2018.05.340
M. Mousavi, A. Habibi-Yangjeh and M. Abitorabi, J. Colloid Interface Sci., 480, 218 (2016); https://doi.org/10.1016/j.jcis.2016.07.021
H. Salari, J. Photochem. Photobiol. Chem., 385, 112069 (2019); https://doi.org/10.1016/j.jphotochem.2019.112069
T. Tapalad, A. Neramittagapong, S. Neramittagapong and M. Boonmee, Chiang Mai J. Sci., 35, 63 (2008).
S. Dafare, P.S. Deshpande and R.S. Bhavsar, Indian J. Chem. Technol., 20, 406 (2013).
J. Fowsiya, G. Madhumitha, N.A. Al-Dhabi and M.V. Arasu, J. Photochem. Photobiol. B, 162, 395 (2016); https://doi.org/10.1016/j.jphotobiol.2016.07.011
P. Latha, R. Dhanabackialakshmi, P.S. Kumar and S. Karuthapandian, Sep. Purif. Technol., 168, 124 (2016); https://doi.org/10.1016/j.seppur.2016.05.038
M. Thomas, G.A. Naikoo, M.U.D. Sheikh, M. Bano and F. Khan, J. Photochem. Photobiol. Chem., 327, 33 (2016); https://doi.org/10.1016/j.jphotochem.2016.05.005
P.S. Kumar, M. Selvakumar, S.G. Babu, S.K. Jaganathan, S. Karuthapandian and S. Chattopadhyay, RSC Adv., 5, 57493 (2015); https://doi.org/10.1039/C5RA08783J