This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Novel Triazolothione, Thiadiazole, Triazole and Oxadiazole Functionalized Tri-fluoromethylnaphthyridine Derivatives and their Anticancer Activity & Antimicrobial Activity
Corresponding Author(s) : Sailu Betala
Asian Journal of Chemistry,
Vol. 32 No. 8 (2020): Vol 32 Issue 8, 2020
Abstract
Novel triazolothione, thiadiazole, triazole and oxadiazole-tagged trifluoromethyl group containing naphthyridine derivatives (6a-l and 7a-d) were synthesized from 2-amino-6-(thiophen-2- yl)-4-(trifluoromethyl)nicotinonitrile (1) on treatment with acetophenone and obtained 2-phenyl-7-(thiophen-2-yl)-5-(trifluoromethyl)-1,8-naphthyridin-4-amine (2), compound 2 on reaction with bromoethylacetate and after that reaction with hydrazine hydrate and obtained carbohydrazide derivatives (4), compound 4 on reaction with different substituted phenyl isothiocyanates to obtain phenyl hydrazine carbothiamide derivatives (5). Compound 5 is independently reaction with NaOH, H2SO4 and N2H4·H2O to obtain triazolothione, thiadiazole, triazole-substituted naphthyridine derivatives (6a-l), respectively. The carbohydrazide compounds 4 on reaction with diverse substituted aromatic acids and obtained oxadiazole derivatives (7a-d). All the synthesized compounds (6a-l and 7a-d) were tested for anticancer activity against four cancer cell lines such as “HeLa-cervical cancer (CCL-2) COLO 205-colon cancer (CCL-222) HepG2-liver cancer (HB-8065) MCF7-breast cancer (HTB-22) and one normal cell line (HEK 293)”. Compounds 6b, 6d and 6l are known to have good anticancer activity at micro molar concentration and found to be non-toxic on normal cell line. And all the products 6a-o and 7a-d were tested against Gram-positive, Gram-negative bacteria and fungal strains. All the compounds, compounds 6e-h showed more activity against Bacillus subtilis (MTCC-121) at < 6.8 micromolar concentration. Compounds (which showed more activity) further screened for minimum bactericidal concentration against B. subtilis MTCC 121 using ciprofloxacin as standard and known to show optimistic activity. These compounds further tested for biofilm inhibition activity against B. subtilis MTCC 121 using erythromycin as standard which confirmed the high activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
-
1.N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu and S.B. Jonnalagadda,
Molecules, 25, 1909 (2020);https://doi.org/10.3390/molecules25081909
2.Z. Hosseinzadeh, A. Ramazani and N. Razzaghi-Asl, Curr. Org. Chem., 22, 2256 (2018);https://doi.org/10.2174/1385272822666181008142138
3.D. Bouzard, P. DiCesare, J.P. Jacquet, B. Ledoussal, P. Remuzon, R.E. Kessler, M. Essiz and J.F. Tomc, J. Med. Chem., 35, 518 (1992); https://doi.org/10.1021/jm00081a013
4.G.R. Rao, K. Mogilaiah and B. Sreenivasulu, Indian J. Chem., 35B, 339 (1996).
5.T.R. Makhanya, R.M. Gengan and A. Ata, Synth. Commun., 49, 823 (2019);https://doi.org/10.1080/00397911.2019.1573373
6.P.L. Ferrarini, C. Manera, C. Mori, M. Badawneh and G. Saccomanni, Farmaco, 53, 741 (1988);https://doi.org/10.1016/s0014-827x(98)00094-9
7.S.X. Zhang, K.F. Bastow, Y. Tachibana, S.C. Kuo, E. Hamel, A. Mauger, V.L. Narayanan and K.H. Lee, J. Med. Chem., 42, 4081 (1999); https://doi.org/10.1021/jm990208z
8.T. Kuroda, F. Suzuki, T. Tamura, K. Ohmori and H. Hosoe, J. Med. Chem., 35, 1130 (1992); https://doi.org/10.1021/jm00084a019
9.G. Roma, G. Grossi, M. Di Braccio, D. Piras, V. Ballabeni, M. Tognolini, S. Bertoni and E. Barocelli, Eur. J. Med. Chem., 43, 1665 (2008); https://doi.org/10.1016/j.ejmech.2007.10.010
10.P.L. Ferrarini, C. Mori, M. Badawneh, F. Franconi, C. Manera, M. Miceli and G. Saccomanni, Farmaco, 55, 603 (2000); https://doi.org/10.1016/S0014-827X(00)00085-9
11.P.L. Ferrarini, M. Badawneh, F. Franconi, C. Manera, M. Miceli, C. Mori and G. Saccomanni, Farmaco, 56, 311 (2001); https://doi.org/10.1016/S0014-827X(01)01075-8
12.A. Santilli, A.C. Scotese, R.F. Bauer and S.C. Bell, J. Med. Chem., 30, 2270 (1987); https://doi.org/10.1021/jm00395a015
13.S.C. Kuo, S.Y. Tsai, H.T. Li, C.H. Wu, K. Ishii and H. Nakamura, Chem. Pharm. Bull. (Tokyo), 36, 4403 (1988); https://doi.org/10.1248/cpb.36.4403
14.P.L. Ferrarini, C. Mori and N. Tellini, Il Farmaco, 45, 385 (1990).
15.V. Massari, D. Daelemans, M.L. Barreca, A. Knezevich, S. Sabatini, V. Cecchetti, A. Marcello, C. Pannecouque and O. Tabarrini, J. Med. Chem., 53, 641 (2010); https://doi.org/10.1021/jm901211d
16.X.Z. Zhao, S.J. Smith, M. Métifiot, C. Marchand, P.L. Boyer, Y. Pommier, S.H. Hughes and T.R. Burke Jr., J. Med. Chem., 57, 5190 (2014);https://doi.org/10.1021/jm5001908
17.A. DaSettimo, G. Primofiore, F. DaSettimo, F. Simorini, P.L. Barili, G. Senatore, C. Martini and A. Lucacchini, Drug Des. Discov., 11, 307 (1994).
18.T. Akhtar, S. Hameed, K.M. Khan, A. Khan and M.I. Choudhary, J. Enzyme Inhib. Med. Chem., 25, 572 (2010); https://doi.org/10.3109/14756360903389864
19.K. Desai and A.J. Baxi, Indian J. Pharm. Sci., 54, 183 (1992).
20.N.G. Gawande and M.S. Shingare, Indian J. Chem., 26B, 387 (1987).
21.M.G. Mamolo, L. Vio and E. Banfi, Farmaco, 51, 71 (1996).
22.H.K. Shucla, N.C. Desai, R.R. Astik and K.A. Thaker, J. Indian Chem. Soc., 61, 168 (1984).
23.M.D. Mullican, M.W. Wilson, D.T. Conner, C.R. Kostlan, D.J. Schrier and R.D. Dyer, J. Med. Chem., 36, 1090 (1993); https://doi.org/10.1021/jm00060a017
24.Y. Song, D.T. Connor, A.D. Sercel, R.J. Sorenson, R. Doubleday, P.C. Unangst, B.D. Roth, V.G. Beylin, R.B. Gilbertsen, K. Chan, D.J. Schrier, A. Guglietta, D.A. Bornemeier and R.D. Dyer, J. Med. Chem., 42, 1161 (1999); https://doi.org/10.1021/jm980570y
25.L. Labanauskas, V. Kalcas, E. Udrenaite, P. Gaidelis, A. Brukstus and A. Dauksas, Pharmazie, 56, 617 (2001).
26.C.B. Chapleo, M. Myers, P.L. Myers, J.F. Saville, A.C.B. Smith, M.R. Stillings, I.F. Tulloch, D.S. Walter and A.P. Welbourn, J. Med. Chem., 29, 2273 (1986); https://doi.org/10.1021/jm00161a024
27.C.B. Chapleo, P.L. Myers, A.C. Smith, M.R. Stillings, I.F. Tulloch and D.S. Walter, J. Med. Chem., 31, 7 (1988); https://doi.org/10.1021/jm00396a004
28.S. Turner, M. Myers, B. Gadie, A.J. Nelson, R. Pape, J.F. Saville, J.C. Doxey and T.L. Berridge, J. Med. Chem., 31, 902 (1988); https://doi.org/10.1021/jm00400a003
29.S. Turner, M. Myers, B. Gadie, S.A. Hale, A. Horsley, A.J. Nelson, R. Pape, J.F. Saville, J.C. Doxey and T.L. Berridge, J. Med. Chem., 31, 906 (1988);https://doi.org/10.1021/jm00400a004
30.G. Mazzone, R. Pignatello, S. Mazzone, A. Panico, G. Penisi, R. Castana and P. Mazzone, Farmaco, 48, 1207 (1993).
31.K. Miyamoto, R. Koshiura, M. Mori, H. Yokoi, C. Mori, T. Hasegawa and K. Takatori, Chem. Pharm. Bull. (Tokyo), 33, 5126 (1985); https://doi.org/10.1248/cpb.33.5126
32.J.Y. Chou, S.Y. Lai, S.L. Pan, G.M. Jow, J.W. Chern and J.H. Guh, Biochem. Pharmacol., 66, 115 (2003); https://doi.org/10.1016/S0006-2952(03)00254-5
33.L.W. Hertel, J.S. Kroin, J.W. Misner and J.M. Tustin, J. Org. Chem., 53, 2406 (1988); https://doi.org/10.1021/jo00246a002
34.R. Filler, Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications, In: Studies in Organic Chemistry, 48, 362 (1993).
35.J. Chae, T. Konno, T. Ishihara and H. Yamanaka, Chem. Lett., 33, 314 (2004); https://doi.org/10.1246/cl.2004.314
36.G.S. Kumar, Y. Poornachandra, K.R. Reddy, C.G. Kumar and B. Narsaiah, Syn. Commun., 47, 1864 (2017); https://doi.org/10.1080/00397911.2017.1354379
37.T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4
38. D. Amsterdam, ed.: V. Loman, Antibiotics in Laboratory Medicine, Williams and Wilkins: Baltimore, USA, edn 4, p. 52 (1996).
39. National Committee for Clinical Laboratory Standards, NCCLS. Methods for DilutionAntimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard NCCLS: Wayne, PA, edn 5 (2000).
40.R.E. Furlani, A.A. Yeagley and C. Melander, Eur. J. Med. Chem., 62, 59 (2013); https://doi.org/10.1016/j.ejmech.2012.12.005
References
Molecules, 25, 1909 (2020);https://doi.org/10.3390/molecules25081909
2.Z. Hosseinzadeh, A. Ramazani and N. Razzaghi-Asl, Curr. Org. Chem., 22, 2256 (2018);https://doi.org/10.2174/1385272822666181008142138
3.D. Bouzard, P. DiCesare, J.P. Jacquet, B. Ledoussal, P. Remuzon, R.E. Kessler, M. Essiz and J.F. Tomc, J. Med. Chem., 35, 518 (1992); https://doi.org/10.1021/jm00081a013
4.G.R. Rao, K. Mogilaiah and B. Sreenivasulu, Indian J. Chem., 35B, 339 (1996).
5.T.R. Makhanya, R.M. Gengan and A. Ata, Synth. Commun., 49, 823 (2019);https://doi.org/10.1080/00397911.2019.1573373
6.P.L. Ferrarini, C. Manera, C. Mori, M. Badawneh and G. Saccomanni, Farmaco, 53, 741 (1988);https://doi.org/10.1016/s0014-827x(98)00094-9
7.S.X. Zhang, K.F. Bastow, Y. Tachibana, S.C. Kuo, E. Hamel, A. Mauger, V.L. Narayanan and K.H. Lee, J. Med. Chem., 42, 4081 (1999); https://doi.org/10.1021/jm990208z
8.T. Kuroda, F. Suzuki, T. Tamura, K. Ohmori and H. Hosoe, J. Med. Chem., 35, 1130 (1992); https://doi.org/10.1021/jm00084a019
9.G. Roma, G. Grossi, M. Di Braccio, D. Piras, V. Ballabeni, M. Tognolini, S. Bertoni and E. Barocelli, Eur. J. Med. Chem., 43, 1665 (2008); https://doi.org/10.1016/j.ejmech.2007.10.010
10.P.L. Ferrarini, C. Mori, M. Badawneh, F. Franconi, C. Manera, M. Miceli and G. Saccomanni, Farmaco, 55, 603 (2000); https://doi.org/10.1016/S0014-827X(00)00085-9
11.P.L. Ferrarini, M. Badawneh, F. Franconi, C. Manera, M. Miceli, C. Mori and G. Saccomanni, Farmaco, 56, 311 (2001); https://doi.org/10.1016/S0014-827X(01)01075-8
12.A. Santilli, A.C. Scotese, R.F. Bauer and S.C. Bell, J. Med. Chem., 30, 2270 (1987); https://doi.org/10.1021/jm00395a015
13.S.C. Kuo, S.Y. Tsai, H.T. Li, C.H. Wu, K. Ishii and H. Nakamura, Chem. Pharm. Bull. (Tokyo), 36, 4403 (1988); https://doi.org/10.1248/cpb.36.4403
14.P.L. Ferrarini, C. Mori and N. Tellini, Il Farmaco, 45, 385 (1990).
15.V. Massari, D. Daelemans, M.L. Barreca, A. Knezevich, S. Sabatini, V. Cecchetti, A. Marcello, C. Pannecouque and O. Tabarrini, J. Med. Chem., 53, 641 (2010); https://doi.org/10.1021/jm901211d
16.X.Z. Zhao, S.J. Smith, M. Métifiot, C. Marchand, P.L. Boyer, Y. Pommier, S.H. Hughes and T.R. Burke Jr., J. Med. Chem., 57, 5190 (2014);https://doi.org/10.1021/jm5001908
17.A. DaSettimo, G. Primofiore, F. DaSettimo, F. Simorini, P.L. Barili, G. Senatore, C. Martini and A. Lucacchini, Drug Des. Discov., 11, 307 (1994).
18.T. Akhtar, S. Hameed, K.M. Khan, A. Khan and M.I. Choudhary, J. Enzyme Inhib. Med. Chem., 25, 572 (2010); https://doi.org/10.3109/14756360903389864
19.K. Desai and A.J. Baxi, Indian J. Pharm. Sci., 54, 183 (1992).
20.N.G. Gawande and M.S. Shingare, Indian J. Chem., 26B, 387 (1987).
21.M.G. Mamolo, L. Vio and E. Banfi, Farmaco, 51, 71 (1996).
22.H.K. Shucla, N.C. Desai, R.R. Astik and K.A. Thaker, J. Indian Chem. Soc., 61, 168 (1984).
23.M.D. Mullican, M.W. Wilson, D.T. Conner, C.R. Kostlan, D.J. Schrier and R.D. Dyer, J. Med. Chem., 36, 1090 (1993); https://doi.org/10.1021/jm00060a017
24.Y. Song, D.T. Connor, A.D. Sercel, R.J. Sorenson, R. Doubleday, P.C. Unangst, B.D. Roth, V.G. Beylin, R.B. Gilbertsen, K. Chan, D.J. Schrier, A. Guglietta, D.A. Bornemeier and R.D. Dyer, J. Med. Chem., 42, 1161 (1999); https://doi.org/10.1021/jm980570y
25.L. Labanauskas, V. Kalcas, E. Udrenaite, P. Gaidelis, A. Brukstus and A. Dauksas, Pharmazie, 56, 617 (2001).
26.C.B. Chapleo, M. Myers, P.L. Myers, J.F. Saville, A.C.B. Smith, M.R. Stillings, I.F. Tulloch, D.S. Walter and A.P. Welbourn, J. Med. Chem., 29, 2273 (1986); https://doi.org/10.1021/jm00161a024
27.C.B. Chapleo, P.L. Myers, A.C. Smith, M.R. Stillings, I.F. Tulloch and D.S. Walter, J. Med. Chem., 31, 7 (1988); https://doi.org/10.1021/jm00396a004
28.S. Turner, M. Myers, B. Gadie, A.J. Nelson, R. Pape, J.F. Saville, J.C. Doxey and T.L. Berridge, J. Med. Chem., 31, 902 (1988); https://doi.org/10.1021/jm00400a003
29.S. Turner, M. Myers, B. Gadie, S.A. Hale, A. Horsley, A.J. Nelson, R. Pape, J.F. Saville, J.C. Doxey and T.L. Berridge, J. Med. Chem., 31, 906 (1988);https://doi.org/10.1021/jm00400a004
30.G. Mazzone, R. Pignatello, S. Mazzone, A. Panico, G. Penisi, R. Castana and P. Mazzone, Farmaco, 48, 1207 (1993).
31.K. Miyamoto, R. Koshiura, M. Mori, H. Yokoi, C. Mori, T. Hasegawa and K. Takatori, Chem. Pharm. Bull. (Tokyo), 33, 5126 (1985); https://doi.org/10.1248/cpb.33.5126
32.J.Y. Chou, S.Y. Lai, S.L. Pan, G.M. Jow, J.W. Chern and J.H. Guh, Biochem. Pharmacol., 66, 115 (2003); https://doi.org/10.1016/S0006-2952(03)00254-5
33.L.W. Hertel, J.S. Kroin, J.W. Misner and J.M. Tustin, J. Org. Chem., 53, 2406 (1988); https://doi.org/10.1021/jo00246a002
34.R. Filler, Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications, In: Studies in Organic Chemistry, 48, 362 (1993).
35.J. Chae, T. Konno, T. Ishihara and H. Yamanaka, Chem. Lett., 33, 314 (2004); https://doi.org/10.1246/cl.2004.314
36.G.S. Kumar, Y. Poornachandra, K.R. Reddy, C.G. Kumar and B. Narsaiah, Syn. Commun., 47, 1864 (2017); https://doi.org/10.1080/00397911.2017.1354379
37.T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4
38. D. Amsterdam, ed.: V. Loman, Antibiotics in Laboratory Medicine, Williams and Wilkins: Baltimore, USA, edn 4, p. 52 (1996).
39. National Committee for Clinical Laboratory Standards, NCCLS. Methods for DilutionAntimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard NCCLS: Wayne, PA, edn 5 (2000).
40.R.E. Furlani, A.A. Yeagley and C. Melander, Eur. J. Med. Chem., 62, 59 (2013); https://doi.org/10.1016/j.ejmech.2012.12.005